Auteursarchief: Jos Hagelaars

Global Carbon Budget: jaarlijkse update van de emissies en opnames van CO2

De huidige klimaatverandering wordt veroorzaakt door de toename van de hoeveelheid broeikasgassen in de atmosfeer. Het is derhalve belangrijk om de grootte van de diverse emissiebronnen en de zogenaamde ‘sinks’, buffers in het klimaatsysteem die broeikasgassen kunnen opnemen, zo goed mogelijk in kaart te brengen. Het mondiale researchproject Global Carbon Project, opgericht in 2001, beoogt juist dat te doen. Vele wetenschappers werken hierin tezamen om jaarlijks het koolstofbudget, de emissies en opnames van CO2, in kaart te brengen. Enkele jaren terug is daar het budget van methaan aan toegevoegd en vorig jaar ook dat van lachgas (N2O).

Onlangs is het Carbon Budget 2020 gepubliceerd, hierin wordt een overzicht gegeven van de emissies en sinks van CO2 vanaf de industriële revolutie tot en met 2019 en wordt een schatting gegeven voor dit jaar. Uiteraard is dat alles samengevat in een wetenschappelijke publicatie (Friedlingstein et al.), samengesteld door maar liefst 86 wetenschappers. Voor 2019 worden de CO2-emissies door gebruik van fossiele brandstoffen en het produceren van cement geschat op 36,4 gigaton (1 gigaton is 1000 miljard kg). Vaak zie je ook dat emissies worden weergegeven in gigaton koolstof (C), 1 kg koolstof komt overeen met 3,664 kg CO2. De uitgestoten hoeveelheid van 2019 was vrijwel gelijk aan die van 2018, twee jaren met de hoogste emissies tot nu toe. Naast deze emissies komt er ook CO2 vrij door veranderend landgebruik (bijv. ontbossing), voor 2019 is dat ongeveer 6,6 gigaton. 2020 is het jaar van het Coronavirus, dat heeft een enorme invloed op ons leven en heeft al heel veel ellende veroorzaakt. De vele maatregelen die de overheden hebben genomen om infectieverspreiding tegen te gaan, hebben een forse invloed gehad op economie en daarmee ook op de menselijke CO2-emissies. Wat via diverse klimaatonderhandelingen nog niet is gelukt, lukt het virus blijkbaar wel, maar dan wel op de slechtst denkbare manier. De emissies van CO2 zijn in 2020 ongekend gedaald en worden bijna 7% lager ingeschat met 34,1 gigaton, ongeveer vergelijkbaar met die van 2011.


Lees verder

Zeespiegelvariabiliteit in en rondom de Noordzee

Gastblog van Tim Hermans

Natuurlijke schommelingen in het jaarlijks gemiddelde zeeniveau in de Noordzee kunnen oplopen tot meer dan 10 centimeter, bijvoorbeeld in Den Helder. Die grote variaties van het ene op het andere jaar vormen een belangrijk deel van het lokaal gemeten zeespiegelsignaal in relatief korte observatie-reeksen zoals satellietmetingen (beschikbaar vanaf 1993). Bij het bepalen van de mondiaal gemiddelde zeespiegelstijging op basis van satellietmetingen (iets meer dan 3 mm/jaar in de periode 1993-2015; Oppenheimer et al., 2019), speelt inter-jaarlijkse variabiliteit een relatief kleine rol. Dit omdat de zeespiegelvariabiliteit in verschillende regio’s dan min of meer wordt uitgemiddeld. Echter, regionaal kan natuurlijke variabiliteit van het zeeniveau op korte termijn de zeespiegelstijging als gevolg van klimaatverandering overschaduwen. Dit bemoeilijkt ook de vergelijking (bijvoorbeeld in de Zeespiegelmonitor, 2018) tussen recente waarnemingen en projecties van regionale zeespiegelstijging in scenario’s voor de toekomst (bijvoorbeeld van Van den Hurk et al., 2014 of Vermeersen et al., 2018) of tussen waarnemingen en projecties van opwarming. Die projecties zijn namelijk gebaseerd op klimaatmodellen, die wel zeespiegelvariabiliteit simuleren, maar niet per se met dezelfde timing als zeespiegelvariabiliteit in de werkelijkheid.

Regionale zeespiegelstijging of zelfs een versnelling van die stijging zou een stuk makkelijker te detecteren zijn zonder inter-jaarlijkse zeespiegelvariabiliteit. Voor een deel van de variabiliteit van het zeeniveau kun je corrigeren, mits je goed begrijpt wat de oorzaak hiervan is. Een studie uit 2017 van Theo Gerkema (NIOZ) en Matias Duran-Matute (TU Eindhoven) (Gerkema and Duran-Matute, 2017) is hier een mooi voorbeeld van. Gerkema en Duran-Matute laten zien dat de inter-jaarlijkse variabiliteit van de zeespiegel aan de Nederlandse kust nauw samenhangt met de gemiddelde kracht en de richting van de wind in dat jaar. In een jaar waarin er gemiddeld een sterke wind vanuit het (zuid)westen waait is het gemiddelde zeeniveau aan de Nederlandse kust hoger, en andersom, omdat de wind het water als het ware opstuwt in richting van de Nederlandse kust. Het resultaat is een positieve correlatie tussen het jaarlijks gemiddelde zeeniveau en windenergie in de west/oost richting. Het gemeten windsignaal kun je vervolgens gebruiken om het gemeten zeeniveau te corrigeren voor schommelingen die worden aangedreven door de wind. Het resultaat is een meetsignaal met een stuk minder ruis, waardoor de foutmarge van de geschatte zeespiegeltrend met een factor 4 kan afnemen (Gerkema and Duran-Matute, 2017).

Een ander voorbeeld van inter-jaarlijkse variabiliteit is te zien in klimaatmodellen. Voor dezelfde klimaatmodellen als waarop zeespiegelprojecties voor de 21e eeuw gebaseerd zijn (bijv. Church et al., 2013; Van den Hurk et al., 2014; Vermeersen et al., 2018), zijn ook simulaties beschikbaar waarbij de concentratie broeikasgassen in de atmosfeer constant wordt gehouden op het niveau van voor de industriële revolutie (zogenaamde ‘pre-industrial control runs’, Taylor et al., 2012). Ondanks dat het zeeniveau in deze simulaties dus niet wordt beïnvloed door klimaatverandering, zijn er in zulke simulaties over periodes van 20 jaar toch trends in het zeeniveau van meer dan 2 mm/jaar in de Noordzee te vinden (Tinker et al., 2020). Die trends moeten dus wel worden veroorzaakt door de interne variabiliteit van het model. De trend in het zeeniveau in de Noordzee zoals afgeleid uit satellietmetingen is ongeveer net zo groot (Sterlini et al., 2017), en dus niet zo makkelijk van die variabiliteit te onderscheiden.
Lees verder

Klimaatverandering is van alle tijden

Klimaatverandering is niet iets dat alleen in de huidige tijd plaatsvindt. Het is van alle tijden zoals de dooddoener al aangeeft waar pseudosceptici soms mee aan komen zetten. De klimaatveranderingen van de afgelopen 66 miljoen jaar zijn in een artikel in Science van afgelopen september opnieuw voor het voetlicht gebracht. Ja, ik weet het, ik loop een beetje achter de feiten – eh artikelen – aan, maar het overzicht van Westerhold et al. is te mooi om zomaar te laten passeren.

De temperatuur van het verre verleden kan worden afgeleid uit de verhouding van zuurstofisotopen (zuurstof-18/zuurstof-16) zoals die voorkomen in het kalskelet van zeediertjes, de foraminiferen. Via boringen in de zeebodem kan men kalkskeletjes opdiepen van heel lang geleden. Hoe dieper, hoe ouder de laag en daarmee ook de ouderdom van de kalkskeletjes. Zo ontstaat een klimaattijdmachine in de vorm van restanten van dode zeediertjes. Westerhold en collega’s (waaronder prof. Lourens van de UU) hebben alle beschikbare data van eerdere onderzoeken opnieuw geanalyseerd, gedateerd en aangevuld met nieuwe gegevens om gaten die in de oudere data zaten zo goed mogelijk op te vullen. Het beeld van eerdere onderzoeken (zie bijv. Zachos 2001, Hansen 2013) gaat hiermee niet overboord, maar wordt wel uitgebreid op detailniveau. In figuur 1 hieronder is het gevonden temperatuurverloop weergegeven, aangevuld mogelijke toekomstige temperaturen volgens IPCC-scenario’s.

Figuur 1. Het temperatuurverloop van de afgelopen 66 miljoen jaar, aangevuld met temperatuurreconstructies van de afgelopen 20.000 jaar en de temperatuurprojecties volgens enkele IPCC-scenario’s. Bovenaan de geologische tijdperken en de verdeling in klimaatmodi (Warmhouse – Hothouse – Coolhouse – Icehouse) van Westerhold et al.. Onderaan een schatting van de atmosferische CO2-concentratie. De rode lijn daarin, bij ca. 600 ppm, geeft de grenswaarde aan waarbij tijdens de overgang van het Eoceen naar het Oligoceen de ijskappen werden gevormd. Bron: Westerhold et al. figuur S34.

Lees verder

Open Discussie najaar 2020

Het zal waarschijnlijk een hele tijd duren voordat de temperatuur in Nederland de twintig graden weer aantikt. Het najaar is nu echt gearriveerd, tijd dus om een nieuwe Open Discussie te openen.

Dit jaar is een wel heel uitzonderlijk jaar gezien de Corona-crisis die het leven van vele mensen nu beheerst en veel leed heeft veroorzaakt. Ook voor het klimaat ziet het er naar uit dat 2020 een bijzonder jaar aan het worden is. Het zou zomaar kunnen dat de mondiale temperatuur opnieuw een record gaat breken, het warmste jaar sinds het begin van de metingen. Dit terwijl 2020 geen El Niño jaar is, het natuurverschijnsel dat normaliter voor temperatuuruitschieters zorgt.

In het Arctische gebied was het minimum oppervlak aan ijs in september het een na laagste sinds 1979. Sindsdien heeft het ijs erg veel moeite om aan te groeien, vooral het gebied boven Siberië blijft ver achter. Het gevolg is dat het ijsoppervlak nu dagelijkse laagterecords neerzet. We zijn heel benieuwd wat de rest van 2020 voor het klimaat nog in petto heeft.

In deze nieuwe Open Discussie kunnen zaken die geen betrekking hebben op specifieke blogstukken aan de orde worden gebracht.

Hoe koud was het tijdens de laatste ijstijd?

De laatste ijstijd spreekt nog altijd tot de verbeelding. Heel veel ijs, kilometers dikke ijskappen op Noord-Amerika en het noorden van Europa en een zeespiegel die circa 120 meter lager stond dan nu het geval is. De periode waarin de ijskappen het grootst waren noemt men het Laatste Glaciale Maximum, afgekort met LGM. Wetenschappers houden van afkortingen. Het LGM is waarschijnlijk ergens tussen 19.000 tot 21.000 jaar geleden geweest (IPCC AR5 – blz. 389). Dat het tijdens de laatste ijstijd op aarde veel kouder was dan nu het geval is, is natuurlijk een open deur. Maar hoeveel kouder? Dat is een vraag die diverse klimaatonderzoekers nog altijd volop bezighoudt. Het IPCC meldde in 2013 (blz. 405) dat het tijdens het LGM zeer waarschijnlijk 3 tot 8 graden kouder was dan in de periode voor de industriële revolutie. Een wel heel ruime range, wat aangeeft hoe groot de onzekerheid hierover nog is. Recent heeft een groep onder leiding van Jessica Tierney opnieuw het LGM onder de loep genomen en in Nature hebben ze daar verslag van gedaan: “Glacial cooling and climate sensitivity revisited”.

De kennis over de staat van het klimaat tijdens het Laatste Glaciale Maximum geeft een mogelijkheid om klimaatmodellen te verifiëren en kan een idee geven over de begrenzingen van de klimaatgevoeligheid. Onderzoek naar het LGM is naast kennisopbouw over het verleden dus ook van belang voor het beter begrijpen van de huidige gevolgen van de stijgende broeikasgasconcentraties. Tierney e.a. hebben hiertoe meer dan 600 proxy’s voor de temperatuur van het zeeoppervlak voor zowel de periode rond het LGM als de laatste 4000 jaar van de periode voor de industriële revolutie bestudeerd. De proxy’s die gebruikt zijn, zijn vanwege de gebruikte rekenmodellen allemaal gebaseerd op veranderingen in isotopenverhoudingen. Zoals bijvoorbeeld de verhouding tussen de zwaardere en lichtere zuurstofatomen (resp. 18O en 16O) in het proxymateriaal. Om vervolgens een idee te krijgen van de temperatuur op de gehele aardbol is een speciaal klimaatmodel gebruikt dat ook variaties in isotoopverhoudingen kan simuleren. De figuur hieronder (bron) geeft het gevonden verschil weer in de temperatuur tussen de pre-industriële periode en het LGM. Hoe blauwer hoe kouder. De grote witte plekken zijn een weergave van de aanwezigheid van ijskappen.

De blauwe wereldkaart laat zien dat het vooral in het Arctische gebied volgens dit onderzoek veel kouder was dan gemiddeld, tot wel 14 graden kouder dan voor de industriële revolutie. Overeenkomstig de Arctische amplificatie van mondiale temperatuurveranderingen (zowel in positieve als negatieve richting) als gevolg van veranderingen in de stralingsbalans zoals door veranderingen in de broeikasgasconcentraties. Als deze concentraties stijgen neemt de temperatuur in het Noordpoolgebied sneller toe dan in de rest van de wereld en het omgekeerde is het geval als deze concentraties dalen. Tijdens het LGM was het volgens Tierney et al. wereldgemiddeld 6,1 °C kouder dan in de paar duizend jaar voordat James Watt met zijn stoommachine op de proppen kwam. Dus ongeveer in het midden van de ruime IPCC-range van 3 tot 8 °C. De grafiek hieronder geeft een vergelijking van hun resultaten met eerdere studies.

De resultaten van Tierney et al. komen goed overeen met verschillende andere studies naar de temperatuur tijdens het LGM, maar er zijn echter ook drie studies die een afwijkend resultaat lieten zien. Tierney en collega’s geven geen verklaring voor de verschillen met deze drie studies. Hier zit ook de bekende temperatuurreconstructie van Shakun et al. (SH12) tussen. Tierney et al. wijzen uiteraard wel op de tekortkomingen in hun onderzoek. Zo zijn de door hun gebruikte temperatuurproxy’s bijna allemaal afkomstig uit kustgebieden en is er maar één model gebruikt om daaruit de temperatuur van de gehele aardbol af te leiden. Er blijven derhalve nog zeker wetenschappelijke vraagtekens bestaan over het LGM en het temperatuurverschil met het einde van het Holoceen.

Het door Tierney et al. gevonden temperatuurverschil kan worden gebruikt voor het berekenen van de klimaatgevoeligheid. Hiervoor wordt het temperatuurverschil gecombineerd met eerder door anderen gevonden verschillen in onder andere de broeikasgasconcentraties, het oppervlak aan ijs en de aerosolen. Zo was de CO2-concentratie tijdens het LGM circa 190 ppm en de methaanconcentratie circa 500 ppb, veel lager dan nu met concentraties van respectievelijk circa 410 ppm en 1870 ppb. Tierney et al. berekenen een klimaatgevoeligheid van 3,4 °C (95% interval van 2,4 – 4,5 °C). Dat komt goed overeen met de resultaten van een recente en heel uitgebreide analyse die aangaf dat de klimaatgevoeligheid waarschijnlijk  tussen 2,3 en 4,5 °C (66% interval) ligt. Het artikel van Tierney et al. sluit af met het statement dat hun resultaten laten zien dat de klimaatgevoeligheid vrijwel zeker groter is dan 2 °C. Sommigen hopen nog dat een heel lage klimaatgevoeligheid tot de mogelijkheden behoort en dat zou ervoor kunnen zorgen dat de toekomstige temperatuurstijging wat mee zal vallen. Dat lijkt helaas steeds meer een vorm van wensdenken te zijn.

Een nieuwe blik op de temperatuur tijdens ons verleden

De illustratie hierboven geeft een fraaie samenvatting van een nieuwe paleoklimatologische studie van Kaufman et al. over de ontwikkeling van de mondiale temperatuur tijdens het Holoceen. Het Holoceen is de geologische periode die ongeveer twaalfduizend jaar geleden begon en waarin wij onze huidige beschaving hebben opgebouwd. De temperatuur van de aarde tijdens ons verleden is onderwerp van veel onderzoek. Het geeft ons een idee hoe de klimaatomstandigheden van onze voorouders moeten zijn geweest en het kan de huidige toestand van het klimaat in perspectief plaatsen. De illustratie laat zien dat de huidige piek in de temperatuur nogal uitsteekt t.o.v. de temperatuur van het Holoceen. Door de onzekerheid in de bepaling van de temperatuur in een dergelijke reconstructie en de lagere tijdsresolutie is het echter niet geheel uit te sluiten dat er de afgelopen twaalfduizend jaar een periode is geweest waarin het ongeveer net zo warm was als nu.

Voorafgaand aan de nieuwe Kaufman-studie is vorig jaar door een consortium van onderzoekers (Pages2K) een nieuwe temperatuurreconstructie van de afgelopen tweeduizend jaar gepubliceerd (zie figuur 1). Het eerste deel van de twee millennia was beduidend warmer dan het laatste deel, met uitzondering van de twintigste eeuw. De eeuwen voor 1850 kenmerkten zich door een langzame afkoeling die rond 1850 werd afgebroken door een sterke opwarming. Opnieuw een bevestiging van de bevindingen van de in de klimaatwereld beroemde artikelen met de hockeystick-grafiek van Mann, Bradley en Hughes uit 1998 en 1999. Volgens het Pages2K-consortium is de snelheid van de recente opwarming veel hoger, over periodes van 20 jaar of meer, dan van elke andere vergelijkbare periode vanaf het jaar 0.
Lees verder

CO2-balans bij gebruik van biomassa als energiebron

Gastblog van Prof. Guido van der Werf

Biomassa is onze oudste bron van energie maar is geleidelijk vervangen door fossiele brandstoffen. De laatste decennia is er weer een opleving van het gebruik van biomassa, met als doel fossiele brandstoffen te vervangen door bronnen met een lagere netto CO2-uitstoot. Biomassa is een containerbegrip met veel verschillende toepassingen, maar in de maatschappelijke discussies gaat het vaak over meestook van pellets (samengeperste stukjes hout) in kolencentrales, en over biomassacentrales op pellets of houtchips voor de productie van warmte. Onlangs is vanuit het PBL een lijvig rapport verschenen onder leiding van Bart Strengers en Hans Elzenga over beschikbaarheid en toepassingsmogelijkheden van alle vormen van biomassa. Het rapport staat uitgebreid stil bij de verschillende perspectieven die een rol spelen bij de beeldvorming. Zo maken sommige mensen zich zorgen over aantasting van natuur en biodiversiteit, of over de invloed van het verbranden van biomassa op luchtkwaliteit. Anderen betwijfelen of het wel bij kan dragen aan het behalen van klimaatdoelen. Dit blog gaat over dat laatste waarbij de nadruk op meestook ligt.

Introductie
Om een mening over meestook en over de gevolgen voor CO2-concentratie en biodiversiteit te vormen is het goed eerst een stap terug te nemen en na te denken over landgebruik en natuurlijke cycli. Laten we beginnen met natuurbranden.

Figuur 1. Oppervlakte dat jaarlijks verbrandt door bos- en graslandbranden, gemiddeld over 2001-2018. De rode kleuren geven de (bijna) jaarlijkse branden in savannegebieden aan, gele en blauwe kleuren zijn vaak in bosgebieden waar brand zorgt voor verjonging en regeneratie van het bos. Let op de logaritmische schaal. Bron: Van der Werf et al. (2017).

Ieder jaar verbrandt op mondiale schaal een oppervlakte gelijk aan de EU (ongeveer 450 miljoen hectare). Voor een groot deel is dit een natuurlijk proces. Hierbij gaat de in biomassa opgeslagen koolstof de lucht in als CO2 en zolang de vegetatie weer aangroeit na de brand wordt die koolstof ook weer opgenomen. Het is deel van een cyclus en beïnvloedt de CO2-concentratie dus niet structureel. De uitzondering daarop zijn de branden die gebruikt worden in het ontbossingproces, en de mogelijke toename van branden door o.a. klimaatverandering. Hierbij wordt de uitstoot maar voor een deel gecompenseerd door aangroei en hierdoor stijgt de CO2-concentratie in de atmosfeer.
Lees verder

West-Antarctica en de Thwaitesgletsjer

Het lijkt welhaast eeuwen geleden, maar tot in februari zijn wij drukdoende geweest met het schrijven van een boek en wat daarbij (en daarna) zoal komt kijken. Het lezen van allerlei nieuwe artikelen over het klimaat die mij interesseren was er nogal bij ingeschoten. Het fijne daarvan is dan weer dat ik nu een dikke digitale stapel over van alles en nog wat heb liggen om eens te bekijken. In die stapel zat een artikel over West-Antarctica en de Thwaitesgletsjer en vol goede moed was ik daar eind februari ingedoken, tot het Corona-virus toch vrij plotseling mijn wereldje en aandacht begon te domineren. Inmiddels is dat een beetje gezakt en heb ik de West-Antarctica-draad opnieuw opgepakt. Bij mij wil het bekijken van zo’n artikel wel eens ietwat uit de hand lopen, het gevolg daarvan staat onder dit overzichtsplaatje van West-Antarctica.

Figuur 1. Overzicht van West-Antarctica. Bron: CarbonBrief.

West-Antarctica staat al erg lang in de belangstelling van de wetenschap. Al in 1968 was er een glacioloog, John Mercer, die het volgende schreef:

“If the apparent warming trend is real and continues until hypsithermal [met hypsithermal bedoelt men de warme periode in het begin van het Holoceen – JH] conditions are reached and exceeded, whether because of industrial pollution of the atmosphere or for any other reason, the West Antarctic Ice Sheet will become a threat to coastal areas of the world within 6 m of sea level.”

Tien jaar later werkte Mercer dit verder uit in een Nature artikel dat ging over de mogelijke gevolgen van het versterkte broeikaseffect op de ijskap van West-Antarctica. Mercer schreef daarin het volgende:

“If the CO2 greenhouse effect is magnified in high latitudes, as now seems likely, deglaciation of West Antarctica would probably be the first disastrous result of continued fossil fuel consumption. A disquieting thought is that if the present highly simplified climatic models are even approximately correct, this deglaciation may be part of the price that must be paid in order to buy enough time for industrial civilisation to make the changeover from fossil fuels to other sources of energy”.

Mercer trok zijn conclusies uit de toenmalige kennis over de ijskap tijdens het geologische verleden en de nog ruwe kennis over het gegeven dat de ondergrond van de ijskap onder de zeespiegel lag. Het vervuilen van de atmosfeer met een berg broeikasgassen is ons in ieder geval gelukt en het afsmelten van de ijskappen op West-Antarctica is gaande en aan het versnellen. Het IPCC rapporteerde in hun SROCC-rapport van 2019 een massaverlies van 53 gigaton aan ijs over 1992-1996 en 159 gigaton over 2012-2016 voor alleen al dat gebied.
Lees verder

Corona – COVID-19


Een cel (groen) geïnfecteerd met SARS-CoV-2 (paars).
Bron: https://www.flickr.com/photos/nihgov/49665964103/

Een maandje terug, nadat ik een beetje bekomen was van onze boekinspanningen, was ik begonnen met het lezen van wat nieuwe artikelen over de ijskappen van West-Antarctica. Ik had uiteraard wat meegekregen over corona, maar ja, dat leek toen toch nog een ver-van-mijn-bed-show. Een maand later bevinden we ons in een geheel andere wereld en zijn de mensen die ik buiten mijn gezin zie veelal alleen gezichten op mijn laptop in Microsoft Teams. West-Antarctica is vrijwel geheel uit mijn denkraam verdwenen en de aandacht voor het klimaat ook. Net als bij iedereen wordt het leven van mijn naasten en mij beheerst door een klein pakketje genetisch materiaal met wat vetmoleculen eromheen. Dat pakketje heet nu officieel SARS-CoV-2 en de ziekte die het veroorzaakt COVID-19. Het is meer dan vreselijk om al die ellende en doden die het virus veroorzaakt voorbij zien te komen.

Bovenstaande zal iedereen niet vreemd in de oren klinken en wellicht is er behoefte om reacties te geven of andere opmerkingen te plaatsen over het virus en COVID-19 met al zijn ellende en zijn gevolgen. Dit blogstuk is daar dan ook voor bedoeld, het klimaat staat even niet op onze radar. De gevolgen van deze virusziekte rollen nu over ons heen, maar de gevolgen van de klimaatverandering die wij mensen veroorzaken zijn daarmee helaas niet weg. Als aan deze ellende een einde komt, is de CO2-concentratie in de atmosfeer opnieuw toegenomen, zij het wellicht wat minder snel. De CO2-concentratie zal pas dalen als we geen uitstoot meer genereren en zelfs SARS-CoV-2 krijgt dat niet voor elkaar. Eerdere mondiale crises leidden ook tot een afname van de CO2-emissie, maar tot nu toe altijd maar tijdelijk.
Lees verder

De wetenschappelijke basis van CLINTEL (part II)

Gastblog van Prof. Guido van der Werf

Professor Guus Berkhout van CLINTEL heeft eerdere kritiek op een oudere versie van de wetenschappelijk onderbouwing van het CLINTEL verhaal ter harte genomen. Niet alleen zijn sommige stukken aangepast -overigens alleen in de onderbouwing, de conclusies blijven min of meer hetzelfde-, ook heeft CLINTEL een reactie online gezet en gaan we eind maart weer in gesprek. Dat was althans de uitgangspositie toen ik deze brief op 5 maart mailde naar Berkhout. En hoewel er geen bevestiging meer gekomen is het aannemelijk dat het gesprek pas later plaats zal vinden vanwege COVID-19.

Vooruitlopend op dat gesprek staan hier alvast wat gedachtes, met name om een aantal misverstanden uit de weg te ruimen. Het eerste misverstand is het geloof van sceptici dat de attributie van de temperatuurstijging aan CO2 en andere menselijke factoren alleen op modellen zou berusten (“die veronderstelde zekerheid is tot nu toe uitsluitend gebaseerd op de uitkomst van computermodellen”). Dit is simpelweg niet waar. Met een computermodel probeer je met name de interacties tussen de verschillende componenten van het aardsysteem te begrijpen. Het is een belangrijk stuk gereedschap waarmee inderdaad ook veel projecties gemaakt worden. Maar ook zonder die klimaatmodellen kan je veel zeggen over het verleden en de toekomst. Een mooi voorbeeld is het grotendeels op waarnemingen gebaseerde rapport van Nic Lewis en Marcel Crok waar in Tabel 3 op pagina 49 ook gewoon staat dat we richting de 2 à 3 graden opwarming gaan zonder mitigatie. Er zijn overigens genoeg redenen om aan te nemen dat dat rapport wat te rooskleurig is maar feit is dat we niet precies weten of we nu op 2 of op 5 graden afstevenen, of uiteraard daar tussenin.

Groeisnelheid van CO2
Het tweede misverstand gaat over een nieuwe grafiek. CLINTEL kopieert een grafiek van Ole Humlum over de mate waarin CO2 in de atmosfeer toeneemt. Deze komt uit het niets en er staat verder geen context bij behalve de opmerking dat variaties in de toename van CO2 volgen op variaties in temperatuur. Daar is op deze site eerder aandacht aan geschonken. Volgens CLINTEL geeft dit “mede aan dat het helemaal niet zeker is of de mainstream klimaatwetenschap wel de juiste richting is ingeslagen.”

Humlum en CLINTEL zijn niet de eerste die zagen dat variaties in CO2stijging volgen op variaties in temperatuur. Let op, dit is een andere vertraging dan die we zien bij het veranderen van de CO2-concentratie bij het komen en gaan van ijstijden. We weten sinds de jaren ’70 dat CO2 sneller toeneemt in de atmosfeer na een warm jaar (meestal samenhangend met El Niño), zie bijvoorbeeld Bacastow (1976). Ikzelf heb eerder over een van de oorzaken gepubliceerd (van der Werf et al., 2004). En iedereen die een keer rustig naar de data kijkt ziet ook in dat dit niet alleen oud nieuws is maar ook dat het conceptueel goed begrepen is.
Lees verder