Categorie archief: Observaties

De toenemende warmte-inhoud van de oceanen – drie nieuwe onderzoeken

Doorsnede van een ARGO boei. Bron UC San Diego

Opwarming van het klimaat is op de keper beschouwd eigenlijk accumulatie van energie in het klimaatsysteem. We nemen die toename van de energie-inhoud vooral waar als een stijging van de temperatuur bij het aardoppervlak. Want daar wonen we nu eenmaal. Maar het overgrote deel van die extra energie, ongeveer 93%, wordt opgenomen door de oceanen. Zo bezien zou de verandering van de warmte-inhoud van de oceanen de beste indicator zijn van klimaatverandering. Alleen is die verandering niet zo makkelijk te bepalen: daarvoor is een driedimensionaal beeld van de temperatuurverandering van de oceanen nodig. Daarover is nog de nodige onzekerheid, maar het beeld wordt wel steeds duidelijker. De afgelopen weken verschenen er drie interessante wetenschappelijke artikelen over dit onderwerp.

Alle drie de artikelen zijn vrij toegankelijk. Het lijkt erop dat wetenschappelijke uitgevers er steeds vaker voor kiezen om belangwekkende artikelen over het klimaat niet achter een betaalmuur te stoppen. Of zou dat een keuze zijn van onderzoeksinstellingen? Dat zou ik nog eens uit moeten zoeken. Het is hoe dan ook een goede ontwikkeling.

Overzicht van de bevindingen van Cheng et al.

De afbeelding hierboven komt uit een overzichtsartikel in Science van Cheng et al.. Twee belangrijke constateringen:

    • De gemeten toename van de warmte-inhoud van de oceanen komt goed overeen met de modelsimulaties uit het CMIP5-experiment.
    • Sinds begin jaren ‘90 neemt de warmte-inhoud sneller toe dan in de periode daarvoor.

Lees verder

Een koude vlek en een vertragende stroming: wat is er aan de hand in de noordelijke Atlantische Oceaan?

201501-201512

Jaargemiddelde temperatuuranomalieën voor 2015 (t.o.v. het gemiddelde van de 20e eeuw) volgens NOAA

In Reykjavik vond eerder deze maand de Arctic Circle Assembly plaats, een jaarlijkse conferentie over allerlei zaken die te maken hebben met het noordpoolgebied. Een van de onderwerpen die hier werden besproken was een opvallend verschijnsel in de Atlantische Oceaan: een plek ten zuiden van Groenland die afkoelt, terwijl de rest van de wereld warmer wordt. Terwijl 2015 wereldwijd een nieuw warmterecord vestigde, was het oceaanoppervlak hier recordkoud. De afkoeling in dit gebied is al jaren aan de gang – Rahmstorf et al. constateerden vorig jaar een dalende trend in de temperatuur over een periode van meer dan een eeuw – en die koelte duurt ook nu nog voort, zoals bijvoorbeeld te zien is bij Nullschool. (Een excuus om nog eens de aandacht op die prachtige site te vestigen is altijd welkom). Op RealClimate geeft Stefan Rahmstorf een uitgebreide toelichting op dit fenomeen. Hieronder volgt een samenvatting van de hoofdpunten.

fig1a_new-600x393

Temperatuurtrend over de periode 1901 – 2013 volgens gegevens van NASA. Bron: Rahmstorf et al. 2015

Lees verder

Schattingen van klimaatgevoeligheid bij elkaar gebracht

Vertaling/bewerking van een blogpost van Ed Hawkins, aangevuld met informatie uit een toelichting van Kevin Cowtan, op de site van de University of York

Klimaatgevoeligheid geeft aan hoe het klimaatsysteem reageert op een verandering in zijn energiebalans, ofwel een stralingsforcering. Klimaatgevoeligheid kan via verschillende methodes bepaald worden, waarbij schattingen gebaseerd op historische instrumentele metingen van de temperatuur meestal lager uitvallen dan wat volgt uit geavanceerde modellen die het klimaat simuleren, of uit andere methodes. Voor sommigen was dit aanleiding om uiterst voorbarig te concluderen dat de modellen te gevoelig zouden zijn.

Een nieuw onderzoek – Richardson et al., verschenen in Nature Climate Change; code en data zijn beschikbaar via de University of York – verklaart de verschillen grotendeels. De uitkomsten van de twee methodes zijn niet helemaal vergelijkbaar omdat ze op een verschillende benadering van de mondiaal gemiddelde temperatuur zijn gebaseerd.

Het onderzoek heeft ook implicaties voor het begrip van de opwarming die volgt uit instrumentele metingen. De daadwerkelijke opwarming zou bijna 25% hoger zijn dan blijkt uit de HadCRUT4 dataset.

Historische meteorologische data bevatten metingen van de temperatuur van de atmosfeer boven land en boven zeeijs en metingen van de temperatuur van het zeeoppervlak. De gegevens zijn vanzelfsprekend alleen beschikbaar voor plekken op aarde waar ze daadwerkelijk gemeten zijn, door weerstations of door schepen. De verandering van de gemiddelde mondiale temperatuur (zoals HadCRUT4) wordt bepaald door deze data te combineren.

De (verandering van de) mondiaal gemiddelde temperatuur die uit modelsimulaties wordt bepaald is meestal de temperatuur van de atmosfeer op twee meter hoogte, gemiddeld over het gehele aardoppervlak (deze temperatuur noemt men in het artikel “tas”). Dit is de meest eenvoudige manier om dit te berekenen. Heeft dit verschil invloed?

Eerder onderzoek van Cowtan et al. liet zien dat dit inderdaad het geval is. De subtiele verschillen in de manier waarop de mondiale temperatuur wordt geschat kan van significante invloed zijn op de conclusies die worden verbonden aan een vergelijking van modellen en observaties.

Terugreizen in de tijd om alsnog metingen te doen op plekken van de aarde waarvoor geen instrumentele data beschikbaar zijn is onmogelijk. Om toch tot een eerlijke “apples to apples” vergelijking te komen, moet er daarom anders gekeken worden naar modelresultaten. De onderzoekers hebben dit gedaan door, bij wijze van spreken, virtuele HadCRUT4 data te berekenen uit modelresultaten. Ze hebben de volgende twee factoren in beschouwing genomen:

  • de beperkte dekking van het aardoppervlak door meetstations (bijvoorbeeld in het Noordpoolgebied); de modeldata die gebasseerd zijn op dezelfde dekkingsgraad als de metingen noemt men “masked”;
  • het gebruik van de gemodelleerde temperatuur van het zeeoppervlak in plaats van die van de atmosfeer boven de oceaan, consistent met de metingen; deze modeldata noemt men “blended”.

Figuur 1 geeft de resultaten van deze analyse.

De rode lijn in figuur 1a geeft de gangbare atmosferische temperatuur uit modelsimulaties weer, gemiddeld over het hele aardoppervlak. De blauwe lijn laat het resultaat zien van een eerlijke vergelijking van modellen en waarnemingen. Het verschil tussen waarnemingen en modellen verdwijnt dan grotendeels. Het verschil tussen atmosferische temperatuur en temperatuur van het zeeoppervlak en de onvolledige dekkingsgraad van het aardoppervlak dragen hier ruwweg in gelijke mate aan bij.

Het effect is significant. Volgens de CMIP5 simulaties zou meer dan 0,2°C opwarming niet zichtbaar zijn in de instrumentele data, door de onvolledige dekkingsgraad en het gebruik van de temperatuur van het zeeoppervlak (figuur 1b). Dit is verklaarbaar omdat het Noordpoolgebied, met een (historisch) lage dekkingsgraad, veel sneller opwarmt dan het mondiaal gemiddelde en omdat de atmosfeer sneller opwarmt dan de oceaan, door het verschil in warmtecapaciteit.

richardson_fig1

Figuur 1. Mediane temperatuur volgens CMIP5 simulaties, vergeleken met HadCRUT4 observaties.

Lees verder

To Pause Or Not To Pause

Het zal de meeste volgers van het klimaatnieuws niet zijn ontgaan: NOAA – NCEI (voorheen NCDC) heeft zijn oppervlaktetemperatuur dataset geüpdatet en UAH is druk doende om zijn temperatuurdataset van de lagere troposfeer op basis van satellietdata te updaten. Updaten van datasets is gewoon een onderdeel dat hoort bij de wetenschappelijke vooruitgang.
De nieuwe NOAA data laten zien dat er geen vertraging waar te nemen is in het lange termijn opwarmingssignaal. In versie v6.0-bèta van de UAH data kan men, net als bij de RSS data, weer lijntjes trekken die vanaf het bekende jaar 1998 ongeveer vlak lopen. Daarbij moet men wel de ogen sluiten voor de grotere onzekerheid in de trendbepaling bij de satelliettemperaturen ten opzichte van de oppervlaktetemperaturen en ook de invloed van de enorme piek in de satelliet-temperatuurdata rond 1998 op de trendbepaling negeren. NOAA wordt op sommige websites natuurlijk beschuldigd van manipulatie, terwijl de nieuwe UAH bèta-dataset al vrolijk wordt ingezet om te melden dat ‘global warming has stopped’. Geen verrassingen dus op dat terrein.

De wetenschappelijke beschrijving van NOAA’s update zijn te vinden in een artikel van Karl e.a. in Science (pdf). De grootste wijzigingen zitten in hun oceaan dataset en bestaan bijvoorbeeld uit correcties voor het overstappen van het meten van de temperatuur van zeewater met boeien i.p.v. met schepen. De nieuwe oceaan-dataset heet ERSST version 4.0.0. Men is tevens bezig met het verbeteren van de land-dataset (o.a. meer meetstations) en het artikel van Karl 2015 heeft daar al gebruik van gemaakt. De data die NOAA-NCEI rapporteert t/m mei 2015 zijn vooralsnog gebaseerd op de land-dataset GHCN version 3.0.0 en niet op de nieuwe land-dataset. Zie hier voor een uitleg en links. Interessant is de vergelijking in Karl 2015 tussen de ruwe data en de data met daarin alle correcties, zie figuur 1.

Figuur 1. De temperatuur anomalie zonder correcties (lichtgroen) en met de correcties van NOAA-NCEI (grijs). Bron: figuur 2B uit Karl 2015.

Lees verder

Toename van CO2 versterkt het broeikaseffect

Metingen aan de infraroodstraling die door de atmosfeer naar de aarde terug wordt gezonden, laten zien dat de stijgende CO2-concentratie heeft geleid tot een versterking van het broeikaseffect: meer en meer infraroodstraling in precies die golflengten waar CO2 absorbeert, wordt teruggestraald naar het aardoppervlak.

Broeikasgassen in de atmosfeer absorberen infrarood licht dat door de aarde wordt uitgestraald en zenden dat vervolgens in alle richtingen weer uit. Het teruggestraalde infrarode licht zorgt ervoor dat de aarde en de oceanen warmer zijn dan ze zouden zijn zonder de aanwezigheid van broeikasgassen: het broeikaseffect. Zonder dit broeikaseffect was het op aarde gemiddeld circa -18 °C. Als de concentratie aan broeikasgassen in de atmosfeer toeneemt, wordt het broeikaseffect versterkt. Figuur 1 geeft de uitgestraalde infraroodstraling door de aarde als functie van het golfgetal (het omgekeerde van de golflengte). Daarin is duidelijk te zien dat broeikasgassen zoals CO2, waterdamp of CH4 bij bepaalde golflengten de uitstraling naar het heelal toe verminderen. Het grote gat rond 667 cm-1 (golflengte 15 µm) wordt veroorzaakt door CO2.

Figuur 1. Uitgaande straling bij de top van de atmosfeer met daarin de absorptie bij bepaalde golflengten van diverse broeikasgassen. De rode lijn is de zogenaamde ‘black body’ emissie van 294 °K. Bron NASA.

Lees verder

Red de Cabauw curve

Door Bart Verheggen en Hans Custers

Bijna een jaar geleden verscheen er op dit blog een stuk over het dreigende einde van de Keeling curve: de metingen van CO2 in de atmosfeer op Mauna Loa, Hawaii. De Keeling curve werd uiteindelijk (voor de komende vijf jaar) gered door een donatie van een half miljoen dollar van Wendy en (ex-Google-baas) Eric Schmidt.

In het NRC van vandaag bericht Paul Luttikhuis dat de Nederlandse versie van de Keeling curve nu tot een einde dreigt te komen (zie ook zijn NRC blog). De regering wil de financiering van CO2-metingen door ECN, bij het meetpunt van het KNMI in Cabauw, stoppen. Omdat ze niet strikt noodzakelijk zouden zijn.

Daar valt wel wat op af te dingen. Het is belangrijk voor het energie- en klimaatbeleid om goed de vinger aan de pols te houden wat de emissies precies zijn en hoe die zich ontwikkelen. Daarvoor zijn metingen onontbeerlijk. Met name metingen op hoge masten zijn heel nuttig, omdat die representatief zijn voor een groter oppervlak dan grondmetingen (die bijvoorbeeld verstoord kunnen worden door een voorbijrijdende auto).

Deze metingen kunnen bijvoorbeeld als input dienen voor atmosferische simulatiemodellen, en door die in “inverse modus” te draaien kun je dan de emissies uitrekenen. Dit heet inverse modelering, omdat normaalgesproken diezelfde modellen worden gebruikt om vanuit de aangenomen emissies en de meteorologische windvelden de concentratie als functie van tijd en plaats te berekenen. Door input en output om te draaien kun je de aangenomen emissies verifiëren op basis van de observaties. Emissieverificatie dus. Daar heb je natuurlijk wel goede, representatieve metingen voor nodig over langere tijd.

Op basis van deze methode, namelijk het koppelen van toren-metingen aan inverse modelering, is bijvoorbeeld gebleken dat de emissies van methaan en lachgas in een aantal landen toch wel wat hoger waren dan de officiële “emission inventories”. De toren metingen worden ook veelvuldig gebruikt voor “ground truthing” van satelliet gegevens. Een meetmast zoals Cabauw is onderdeel van onze kennis-infrastructuur. Het is niet voor niets gekenmerkt als een zogenaamde “super-site” voor meteorologische observaties.

Cabauw 2
Lees verder

Verwarring over de opwarming van de oceanen

Door Bob Brand en Jos Hagelaars

Door menselijke activiteiten is de aarde aan het opwarmen en circa 93% van die warmte wordt door de oceanen opgenomen. De verandering in de warmte-inhoud van de oceanen is derhalve een heel belangrijke graadmeter voor de klimaatverandering. Het is voor de klimaatwetenschap dan ook een belangrijk onderwerp van onderzoek.

Recent zijn er twee artikelen uitgekomen over de opwarming van de oceanen in het tijdschrift Nature: Durack et al over het onderschatten van de opwarming van 1970 t/m 2004 tot 700 meter diepte (vooral op het zuidelijk halfrond) en Llovel et al over de opwarming van de gehele oceaan van 2005 t/m 2013. Volgens sommige commentatoren lijken deze onderzoeken elkaar tegen spreken en er is wat verwarring over de verschillende oceaandiepten.

Durack: onderschatten van de opwarming

Durack e.a. hebben de diverse datasets betreffende de warmte-inhoud (OHC = ocean heat content) van de oceanen vergeleken met de theoretische verwachting volgens modellen en met de zeespiegelstijging zoals gemeten met satellieten. Daar een deel van de zeespiegelstijging wordt veroorzaakt door de thermische uitzetting van het oceaanwater, is er een grote correlatie tussen de zeespiegelstijging en de warmte-inhoud. Op grond van deze analyses concluderen Durack e.a. dat de warmte-opname van het zuidelijk halfrond voor de periode 1970 t/m 2004 te laag is ingeschat. Zij wijten dit aan de beperkte dekkingsgraad van de diverse warmte-inhoud meetinstrumenten op het zuidelijk halfrond over die periode. Vanaf circa 2004 is deze dekkingsgraad verbeterd door het inzetten van de Argo sondes.

Durack en zijn mede-auteurs hebben doorgerekend wat deze onderschatting van de opwarming betekent voor de diverse warmte-inhoud datasets, zie figuur 1. Voor de mondiale NOAA data (Levitus 2012, de donkerblauwe balk) zou de onderschatting mondiaal gemiddeld oplopen tot maar liefst 58%.

Figuur 1: De waargenomen en gesimuleerde verandering van de warmte-inhoud voor 1970-2004. Figuur 5 uit Durack et al.

Lees verder

Jazeker hebben wij mensen voor opwarming gezorgd!

“It is extremely likely that human influence has been the dominant cause of the observed warming since the mid-20th century.”

Meestal gaan we op dit blog in veel stukken diep op de wetenschap in, wat voor nieuwkomers in het klimaatonderzoek lastig te volgen kan zijn. Dit keer probeer ik de basis te bespreken van de achtergrond van de bovenstaande zin. Het is een stuk tekst uit de samenvatting voor beleidsmakers van het IPCC AR5-rapport van 2013: de mens is de belangrijkste veroorzaker van de opwarming van de aarde sinds 1950. Niet iedereen gelooft deze uitspraak, maar de klimaatwetenschap is er toch erg zeker van.

De temperatuurverandering

Nadat Galileo, Fahrenheit en Celsius zich in het verre verleden met het meten van de temperatuur en de thermometer hadden bemoeid, hebben mensen ook de temperatuur van hun omgeving gemeten en vastgelegd. In Nederland startte dat bijvoorbeeld al aan het einde van de 17e eeuw. Naarmate de tijd vorderde, werden deze meetmethoden uiteraard steeds beter en werd er op steeds meer plaatsen in de wereld gemeten. Deze temperatuurmetingen vormen de basis van de bepaling van de mondiale temperatuurverandering van de afgelopen paar honderd jaar door een aantal onderzoeksgroepen. De bekendste groepen die zich daar mee bezighouden zijn NASA GISS en NOAA-NCDC uit de VS, het Engelse Met Office Hadley Centre/CRU of het Japan Meteorological Agency, je komt hun gegevens vaak tegen onder de namen GISTEMP, NCDC, HadCRUT en JMA. De Amerikaanse groepen rapporteren mondiale temperatuurdata die starten in 1880, de Japanse data starten in 1891 en de data van de Engelse groep starten zelfs in 1850.

De grafiek in onderstaande figuur komt uit het IPCC AR5-rapport en geeft de temperatuurontwikkeling op aarde weer vanaf 1850, gebruik makend van de resultaten van de drie hierboven genoemde onderzoeksgroepen. In de grafiek is de gemiddelde temperatuur op aarde over de periode 1961 – 1990 op 0 gesteld en dus geven alle lijnen in de grafiek de afwijking van de temperatuur weer t.o.v. die referentie periode (de temperatuur anomalie). Eén ding valt direct op als je naar de grafiek kijkt: het is warmer geworden op aarde sinds het einde van de 19e eeuw en dan vooral na 1970. Na 1970 is ook elk decennium warmer geweest dan het voorgaande. Volgens het IPCC is het op aarde sinds 1880 circa 0,85 °C warmer geworden en na 1950 circa 0,65 °C.

Figuur 1: De temperatuurverandering op aarde sinds 1850 waarbij drie temperatuurdatasets zijn gebruikt (HadCRUT – zwart, GISTEMP – blauw, NCDC – oranje). Gebaseerd op figuur SPM.1a uit het IPCC AR5 rapport 2013.

Lees verder

Klimaatmodellen en de Tijdmachine van Meehl

Klimaatmodellen en de ‘hiatus’

Klimaatmodellen. Gooi dit woord in een groep van zogenaamde klimaatsceptici en je krijgt ongetwijfeld een flinke dosis hoon over je heen. De oorzaak van dit interessante fenomeen is gelegen in het feit dat de prognoses van het IPCC voor diverse toekomstscenario’s onder meer zijn gebaseerd op berekeningen met, jazeker: Klimaatmodellen. Die prognoses laten zien dat het op aarde flink warmer zal worden als we op deze wijze doorgaan met het uitstorten van broeikasgassen in de atmosfeer. Uiteraard vindt men dit in klimaatsceptische kringen geheel onjuist, want ieder kind kan zien dat de klimaatmodellen totaal onbruikbaar zijn: de beroemde ‘hiatus’ – de langzamere stijging van de oppervlaktetemperatuur na circa 2000 t.o.v. de 30 jaar daarvoor – is niet voorspeld door de klimaatmodellen. Zie figuur 1.

Figuur 1. 82 CMIP5 model runs op basis van het RCP8.5 scenario (licht blauwe lijnen) met hun gemiddelde (de zwarte lijn). De rode meetpunten zijn HadCRUT4 data en de blauwe de Cowtan & Way data (van de methode ‘Hybrid-UAH’), het jaar 2014 betreft de gegevens t/m juli. De dikke rode lijn en blauwe lijn zijn verkregen uit de HadCRUT4 en Cowtan & Way data via een Loess smooth over 30 jaar.

Lees verder

Het weer is warmer dan het klimaat (in het vroege Antropoceen)

Enkele dagen geleden zag ik een serie van vier tweets voorbijkomen van Kees van der Leun.

Het leek me wel aardig om uit te zoeken wanneer de jaargemiddelde temperatuur voor het laatst lager was dan het gemiddelde over de voorafgaande 30 jaar. En dus toog ik spoorslags naar het onvolprezen Woord for Trees, dat naast die geweldige tool om met enkele muisklikken grafieken te maken, ook de mogelijkheid biedt om gegevens in hapklare brokken te downloaden. Dat moest ik wel even doen, want de grafiek die ik nodig had hoort niet bij de standaard opties van Wood for Trees.

Na het downloaden was het klusje zo geklaard: ik had een grafiek met het antwoord. Waarna ik me begon af te vragen wat ik ermee aan kon vangen. Liep ik niet het risico met hoon te worden overladen als ik mijn grafiekje openbaar zou maken? Immers, volgens de regels der kunst in de statistiek hoort een voortschrijdend gemiddelde uitgelijnd te worden op het midden van een periode en niet op het eind, zoals ik voor mijn 30 jaars gemiddelde had gedaan. Dat was immers nodig om het antwoord op de vraag te krijgen. Medeblogger Jos stelde me gerust. Ik zou niet de enige zijn die zich niet aan de statistische mores houdt: in de wereld van de aandelenhandel blijkt het heel gebruikelijk te zijn om op deze manier een voortschrijdend gemiddelde weer te geven als hulpmiddel bij het beleggen. Als de actuele waarde hoger ligt dan het voortschrijdend gemiddelde, ziet men daar zelfs een aanwijzing in voor verdere groei. Zover wil ik niet gaan. Voor de verwachting dat de temperatuur verder zal stijgen, bestaan bewijzen die veel overtuigender zijn.

Bovendien: het klimaat is gedefinieerd als het gemiddelde weer over een periode van (minstens) 30 jaar. Omdat we het weer van de komende 15 jaar niet kennen, denk ik dat het ook wel redelijk is om het klimaat te definiëren als het gemiddelde weer van de afgelopen 30 jaar. Mijn grafiek vergelijkt dus het actuele wereldweer (in blauw) met het actuele wereldklimaat (in rood), volgens NASA’s GISTEMP.

gisstemp30j

Het wereldweer (gemiddelde over 12 maanden, in blauw) en wereldklimaat (gemiddelde over 30 jaar, in rood) volgens NASA’s GISTEMP data

De laatste keer dat de jaargemiddelde temperatuur lager was dan het 30 jaars gemiddelde was: maart 1977. Dat is meer dan 30 jaar geleden. We kunnen dus concluderen dat weer dat warmer is dan het klimaat een kenmerk van het huidige wereldklimaat is.

Tot slot nog iets heel anders: zoals via Twitter het idee voor een grafiekje aanwaaide, verscheen via Youtube een interview met Jan Paul van Soest op mijn scherm. Het is de moeite van het bekijken meer dan waard.