Categorie archief: Extreem weer

Een evaluatie van attributiemethoden. Maar van welke precies?

Een inventieve toepassing van het single study syndrome door xkcd

Een week of wat geleden trok een artikel in Science Advances, het open access filiaal van Science, mijn aandacht: Verification of extreme event attribution: Using out-of-sample observations to assess changes in probabilities of unprecedented events van Noah Diffenbaugh. De conclusie van Diffenbaugh is pittig: de methodes die worden gebruikt voor de attributie van extreem weer zouden het effect van klimaatverandering vaak flink onderschatten. Ik besloot het artikel te lezen, en er misschien wel iets over te schrijven.

Maar eerst keek ik even naar wat berichten die er al over op internet stonden. Science Advances geeft een handig overzicht van die berichten. En daar viel me iets op: veel van die artikelen schrijven wel iets over een onderschatting, maar wat er precies onderschat wordt is niet altijd even duidelijk. Er wordt nogal eens geschreven dat het om de voorspelde toename van extreem weer zou gaan, in plaats van over attributie. En dat is toch echt iets anders: attributie is geen voorspelling maar een analyse achteraf. Zelfs Stanford, het instituut waar Diffenbaugh werkt, heeft het over “more extreme weather than predicted“. Een slordigheidje van de voorlichters, misschien? Lees verder

Hogere afvoeren Rijn en Theems, terwijl Rhône en Tiber langzaam opdrogen

Hoogwater in de IJssel, januari 2018. Door toename van winterneerslag nemen de piekafvoeren van rivieren in Europa toe. Een half jaar later werd de laagste rivierstand ooit bereikt. Credit beeld: Maria Kolossa.

Gastblog van Rolf Schuttenhelm

We krijgen in Nederland langzaamaan wat oog voor de lange termijn effecten van zeespiegelstijging. Maar als we naar het water kijken, is dat maar het halve verhaal. Hoog tijd om ook naar de binnendijkse uitwerking van klimaatverandering te kijken. Zoals de invloed van neerslagveranderingen op rivierstanden.

Klimaatverandering vergroot in Europa verschillen in rivierwaterstanden. De winterafvoer wordt gemiddeld hoger en de zomerafvoer juist lager. Maar niet elke rivier gedraagt zich hetzelfde, blijkt uit nieuw onderzoek. Vooral rivieren in Noordwest-Europa hebben door een toename van regenval in de herfst en winter hogere piekafvoeren. Een aantal van deze rivieren treedt dan ook vaker buiten hun oevers.

Drie grote trends: meer verdamping, meer regen, minder sneeuw

Rond de Middellandse Zee drogen rivieren juist langzaam op door toenemende verdamping. Ook in Oost-Europa komen rivieroverstromingen minder vaak voor. Hier is de oorzaak een afname van de sneeuwbedekking in de winter. De voorjaarsdooi valt weliswaar steeds vroeger in, maar brengt dan minder smeltwater in beweging.

We danken de inzichten aan een onderzoek waar 47 wetenschappers uit diverse Europese landen aan hebben meegewerkt, onder leiding van de Technische Universiteit Wenen. Zij vergeleken voor 3.700 meetpunten de ontwikkeling van de hoogste waterafvoeren van alle grote rivieren in Europa, over de vijftig jaar tussen 1960 en 2010. De resultaten zijn gepubliceerd in Nature.

Het verschilt sterk van rivier tot rivier, schrijven de onderzoekers: de afvoer van sommige rivieren neemt met 18 procent per decennium toe, terwijl andere rivieren in tien jaar tijd bijna een kwart van hun water hebben verloren.

Op basis van veranderingen van de piekafvoeren en de onderliggende klimaatdrijvers definiëren de auteurs drie regio’s in Europa: (1) Noordwesten, met toename piekafvoeren en overstromingen door toename winterneerslag, (2) Zuiden, met afname door dominate toename van verdamping in stroomgebieden en (3) Oosten, met afname overstromingen door afname sneeuwbedekking.

Lees verder

Een hittegolven-rapport dat geen extreme hitte analyseert

Temperatuurrecords van Nederlandse weerstations. Bron: W. in ’t Erland, Onweer Online

Als we de afgelopen weken iets hebben kunnen merken over het klimaat, dan is het wel dat extreme hitte extremer wordt. In Nederland sneuvelde het warmterecord van 38,6°C uit 1944 in Warnsveld. Niet met een beetje, het werd met meer dan 2°C verpulverd. En dat niet alleen: in 3 dagen tijd werden er door de 34 KNMI-weerstations in Nederland maar liefst 24 maximumtemperaturen gemeten boven dat tot dan toe onaantastbare record. Waarvan 9 hoger dan 40°C. Ook elders in West-Europa werden tal van hitte-records verbroken, met temperaturen die een eeuw geleden zo goed als onmogelijk waren.

Het is natuurlijk volkomen logisch dat in een warmer klimaat de kans op extreme hitte groter is. Toch blijken er, zelfs na de recente recordregen, mensen te zijn die deze simpele logica weigeren te accepteren. Bijvoorbeeld aan de hand van het rapport van Dijkstra et al. dat de door het KNMI uitgevoerde homogenisatie van de temperatuurdataset van De Bilt bestrijdt. De suggestieve ondertitel maakt duidelijk dat het rapport niet bedoeld is als objectieve contra-expertise, maar als aanval op het KNMI: “Hoe het KNMI historische hittegolven uit de boeken schrapte”. De door het KNMI uitgevoerde homogenisatie werd op dit blog net voor de hittegolf van juli nog bevestigd door de analyse van Tinus Pulles. Omdat de verdachtmakingen daarna gewoon door zijn gegaan zijn we wat dieper in het rapport van Dijkstra c.s. gedoken. En de kwaliteit van wat we aantroffen valt bepaald niet mee. We lichten er hier enkele methodologische missers en onjuistheden uit. Lees verder

Europese hittegolf in juni versterkt door klimaatverandering

De laatste week van juni zat een groot deel van Europa te zweten in een hittegolf. Hoewel in Nederland de definitie van hittegolf net niet werd gehaald, was het ook hier een aantal dagen achter elkaar erg warm.

Het zwaartepunt van de warmte in Europa lag in Frankrijk, zoals in de figuur hieronder te zien is. Het KNMI schrijft hierover:

Toevallig was er die week net een grote conferentie over extreem weer en klimaatverandering in Toulouse in Zuid-Frankrijk (waar donderdag 40,2 ºC gemeten werd, een record voor juni, en de nacht daarvoor niet koeler werd dan 24,2 ºC, een nieuw record voor het hele jaar). Met een aantal wetenschappers die daar aanwezig werd besloten de meetgegevens door te rekenen en met de uitkomsten van klimaatmodellen te vergelijken. Deze ‘snelle attributiestudie’ werd geleid door Geert Jan van Oldenborgh van het KNMI.

Het vorige warmterecord voor Frankrijk werd compleet weggevaagd met 45,9 °C.

De temperatuur van de drie warmste dagen in juni 2019 vergeleken met de drie warmste dagen in juni 1981-2010. Bron KNMI/E-OBS

Zowel op basis van klimaatmodellen als op basis van observaties kan iets gezegd worden over de toegenomen waarschijnlijkheid van een hittegolf met deze intensiteit. Wat opvalt is dat de modellen een stuk lager uitkomen: een factor 2 tot 20 keer zo waarschijnlijk. Afgaand op de observaties is dit zo’n 200 keer zo waarschijnlijk, met een range van 10 tot 10.000. De oorzaak voor het relatief grote verschil tussen waarnemingen en modellen is niet duidelijk. De onzekerheid in de precieze toename is dus aanzienlijk, maar dat een dergelijke hittegolf veel waarschijnlijker is geworden is wel duidelijk.

Toename in waarschijnlijkheid van een hittegolf zoals in Juni 2019. Links voor heel Frankrijk, rechts voor de stad Toulouse. Blauw is gebaseerd op observaties, rood op modellen.

Je kunt er ook op andere manier naar kijken. Volgens de metingen is deze hittegolf 4 graden warmer dan een hittegolf die met dezelfde frequentie optrad in het pre-industriële klimaat. Volgens de modellen is het verschil 2 graden.

Toename in de temperatuur van een hittegolf met dezelfde frequentie als die in Juni 2019. Links voor heel Frankrijk, rechts voor de stad Toulouse. Blauw is gebaseerd op observaties, rood op modellen.

Zondagavond was er een reportage in Nieuwsuur hierover, waarvoor Geert Jan van Oldenborgh (KNMI), Dim Coumou (VU) en ik (AUC) waren geïnterviewd.

Meer aanwijzingen voor een verband tussen aanhoudend extreem zomerweer en snelle opwarming in het Noordpoolgebied

Schematische weergave van een blokkade

Dat extreem zomerweer extremer kan worden in een warmer klimaat ligt voor de hand. Als de temperatuur stijgt kunnen hittegolven warmer worden, vaker voorkomen of langer duren. Of alle drie. En uit warmere oceanen verdampt meer water, wat extremere neerslag tot gevolg kan hebben. Dit soort veranderingen is te verwachten op basis van vrij simpele fysische (of: thermodynamische) processen. Maar er is ook een ander soort veranderingen mogelijk, dat te maken heeft met de atmosferische dynamiek. De aarde warmt niet overal evenveel of even snel op. Land warmt sneller op dan oceanen, en door arctische amplificatie warmt het Noordpoolgebied sneller op dan de tropen. Temperatuurverschillen drijven de circulatie in de atmosfeer aan. Als die temperatuurverschillen veranderen, kan er dus ook wat veranderen in stromingspatronen in de atmosfeer. En dat kan op bepaalde plekken op aarde gevolgen hebben voor het weer.

De atmosferische dynamiek is veel complexer dan de thermodynamica van het klimaat. Hoe die dynamiek verandert in een veranderend klimaat is dan ook niet zo makkelijk te voorspellen. Klimaatmodellen simuleren zulke veranderingen niet zo goed. Er is dus nog de nodige onzekerheid over wat op dit punt zal gebeuren als het klimaat verder opwarmt. Terwijl het wel belangrijk is, omdat het veel invloed kan hebben op wat er met het klimaat gebeurt op lokaal niveau. Het vergaren van kennis hierover is daarom een belangrijk aandachtspunt van de klimaatwetenschap.

Hoeveel invloed atmosferische dynamiek kan hebben, hebben we afgelopen zomer gemerkt. Een hogedrukgebied dat lang op ongeveer dezelfde plek boven Scandinavië bleef liggen – in meteorologisch jargon: een blokkade – zorgde voor een aanhoudende stroom van warme en droge lucht. Had die blokkade op een andere plek gelegen, dan hadden we misschien de hele zomer in de regen gezeten. Lees verder

Worden de warmste dagen in Nederland warmer?

Gastblog van Tinus Pulles

Wordt het warmer?

Er is recentelijk veel discussie rondom de vraag of het warme weer van de laatste weken wordt veroorzaakt door klimaatverandering. Op Twitter leidt dat tot een lange reeks van tweets over deze kwestie. Een van de topics is de “hittegolven”: worden er dat nu meer of niet? “Hittegolven” en met name de frequentie daarvan wordt hier gezien als één van de indicatoren dat het klimaat warmer wordt en de extremen wellicht extremer.

Hittegolven

In deze discussie is het van belang je te realiseren dat er verschillende definities van het begrip “hittegolf” zijn:

  • De “informele” definitie in het algemeen spraakgebruik (van Dale): een periode met zeer hoge temperaturen
  • De “officiële” definitie in de meteorologie (KNMI): een serie van minstens 5 zomerse dagen waarvan er zeker 3 tropisch zijn
    • een zomerse dag heeft een (maximum) temperatuur van 25,0 graden of hoger.
    • een tropische dag is volgens de meteorologie een dag waarop de maximumtemperatuur 30,0 graden of hoger is.

Deze twee verschillende definities zijn verwarrend in een discussie tussen niet-deskundigen. Wanneer bijvoorbeeld twee “officiële” hittegolven, kort na elkaar plaatsvinden (zoals in de afgelopen periode, zullen die in veel gevallen als één periode met zeer hoge temperaturen worden waargenomen. Of, met andere woorden, als die enkele koelere dag tussen twee officiële hittegolven niet plaatsvindt, is het maar één officiële hittegolf, terwijl er in het spraakgebruik nog steeds één periode met zeer hoge temperaturen is voorgekomen.

Er kan dus een verschil zijn tussen het aantal hittegolven dat officieel wordt geteld en dat aantal dat informeel wordt waargenomen. Dit is nog los van de mogelijkheid dat bij een officiële hittegolf in de Bilt (“nationale hittegolf”) op andere plaatsen in het land géén formele hittegolf wordt waargenomen. En omgekeerd: bij een lokale hittegolf elders in het land hoeft die niet ook in de Bilt te zijn waargenomen.

Homogeniseren van meetgegevens

Een tweede probleem bij het vaststellen of het aantal hittegolven in de loop der jaren verandert, is dat de metingen van het KNMI niet altijd volledig consistente meetseries kunnen leveren. Meetlocaties kunnen veranderen en meetinstrumenten kunnen worden verbeterd en vernieuwd. Beide veranderingen zijn in de loop van de afgelopen 120 jaar voorgekomen. Het KNMI probeert daarom uit de ruwe metingen consistente tijdreeksen af te leiden, de zogenaamde gehomogeniseerde meetreeksen. Een belangrijk aspect van dit homogeniseren is dat de nieuwere meetopstelling tot ongeveer 2 graden lagere temperaturen waarneemt dan de oudere. Deze 2 graden betreft de maximum waarden op warmere dagen, voor de gemiddelde dagwaarden kon dit oplopen tot circa 1,1 graad. Dat betekent dat in de “officiële” definitie van een hittegolf dagen, die in de oude methode als nét zomers of nét tropisch worden gezien, in de nieuwere methode niet meer zomers of tropisch zullen zijn. Daarmee neemt dus het aantal “officiële” hittegolven in de periode dat de oude opstelling werd gebruik af. Met name Marcel Crok maakt zich daar nogal druk over. Maar hij niet alleen. De werkelijkheid verandert uiteraard niet door deze homogenisatie en ook niet door de nieuwe meetmethode of de andere locatie.
Lees verder

Zware regenbuien: wel of niet vaker en intenser?

Gastblog van Tinus Pulles

Een recente discussie op Twitter heeft een paar lessen opgeleverd die ik hier graag met lezers van deze blog wil delen.

  1. Het is waarschijnlijk dat zware regenbuien in Nederland vaker voorkomen én gemiddeld genomen intenser worden
  2. Statistiek is een lastig vak, wellicht toch vooral over te laten aan mensen die daar verstand van hebben.

Frequentie en Intensiteit Zware regenbuien

Het ontstaan en het uitregenen van buien is een complex proces, waarin vele niet-lineariteiten een rol spelen. Het ontstaan van een individuele bui en het enige tijd tevoren voorspellen van hoeveel regen daar uit zal vallen, en waar, is daardoor principieel onmogelijk. Het is, zoals zo veel verschijnselen in het dagelijkse weer, een voorbeeld van een proces dat kan worden beschreven met behulp van de chaostheorie. Als ik hieronder over een ‘chaotisch proces’ spreek, bedoel ik chaos in de zin van de chaostheorie, niet in de zin dat we er wel niks van kunnen begrijpen.

Dat het voorspellen van een individuele bui onmogelijk is, betekent niet dat je niets kunt zeggen over de frequentie en de intensiteit van zulke buien en de veranderingen daarvan in de tijd. In Figuur 1 zijn de gemeten 20 hoogste totale dagsommen van de regen in De Bilt weergegeven voor vijf recente jaren, gesorteerd van hoog naar laag. Wat opvalt is dat, naarmate je meer naar de hoogste waarden kijkt, de variabiliteit van jaar tot jaar groter wordt.

Figuur 1: De 20 dagen waarop het meeste neerslag viel voor de jaren 2013 t/m 2017; data van KNMI

Er zijn twee manieren om naar de verandering van frequentieverdeling van het chaotische proces in deze grafiek te kijken:

  1. Tel het aantal keren dat een vaste waarde (bijvoorbeeld 50 mm) in een jaar wordt overschreden.
  2. Meet de hoeveelheid regen die met een vaste frequentie (bijvoorbeeld 1 keer of 10 keer) in een jaar wordt overschreden.

Lees verder