Categorie archief: Stralingsbalans

Energie, afvalwarmte en exponentiële groei

Historisch mondiaal energieverbruik. De rode lijn geeft het verbruik aan bij een groei van 2,3% per jaar. Bron: Murphy 2022

Begin dit jaar schreef ik hier dat oneindige exponentiële groei niet bestaat. En dat dat dus ook voor de economie een illusie is. Dat volgt uit basale rekenkundige logica. Vroeg of laat botst een exponentieel groeiend systeem op zijn grenzen. Een artikel van de Amerikaanse natuurkundige Thomas W. Murphy jr in Nature Physics bevat enkele mooi uitgewerkte rekenvoorbeelden die dat illustreren. Dat artikel is afgelopen zomer al gepubliceerd, maar trok pas recent de aandacht. De eerste gedachten van Murphy hierover gaan nog verder terug. Hij beschreef ze in 2011 al op zijn eigen blog. Omdat het meest in het oog springende rekenvoorbeeld over klimaat en energie gaat, leek het me de moeite waard om er hier aandacht aan te besteden.

Op dit moment bedraagt ons wereldwijde energieverbruik maar een fractie van wat we van de zon ontvangen. Ongeveer een honderdste van een procent. In theorie zou onze hele economie dus best op duurzame energie kunnen draaien, die (direct of indirect, via bijvoorbeeld wind of biomassa) door de zon wordt geleverd. Maar als ons energieverbruik blijft stijgen in het tempo van de afgelopen eeuw, met zo’n 2 tot 3 procent per jaar, lukt dat niet zo heel erg lang. Voor het gemak rekent Murphy met een groeipercentage van 2,3; dat komt neer op een vertienvoudiging per eeuw. Met dat groeitempo zouden we over 400 jaar evenveel energie gebruiken als de zon levert. Het zal duidelijk zijn dat de grens van wat we aan zonne-energie kunnen oogsten veel eerder wordt bereikt.

Lees verder

Wat is eigenlijk een broeikasgas?

Eerder en in iets andere vorm verschenen op NU.nl in de serie “Klimaatvragen”

Als de hoeveelheid broeikasgassen in de atmosfeer stijgt, gaat de temperatuur omhoog. Maar hoe komt dat eigenlijk? En waarom hebben sommige gassen wel deze werking, en andere niet?

Broeikasgassen zijn gassen die warmtestraling opnemen. Die warmte wordt vervolgens weer teruggestraald naar de omgeving. Oók terug naar de aarde, die daardoor een hogere temperatuur krijgt. Dit noemen we het broeikaseffect. Als de hoeveelheid broeikasgassen in de atmosfeer toeneemt, dan stijgt de temperatuur.

Maar wat maakt een gas dan een broeikasgas?

Verreweg het grootste deel van de lucht, stikstof en zuurstof, is niet alleen doorzichtig voor zichtbaar licht (blauw, geel en rood), maar ook voor warmtestraling (infrarood). Die straling gaat er dus net als zichtbaar licht dwars doorheen. Een aantal andere gassen laat warmtestraling niet zomaar door. Dat zijn broeikasgassen: gassen die een deel van de warmtestraling absorberen. Hoewel hun concentratie in de lucht relatief laag is, is hun effect op de temperatuur groot.

Maar waarom dan? Dat heeft te maken met de vorm van de moleculen waar het gas uit bestaat. En dat is nog best complex: een molecuul kan warmtestraling absorberen als het kan meetrillen met dezelfde golflengte als de warmtestraling. Dat kun je vergelijken met een stemvork die meetrilt met een bepaalde toonhoogte. Het trillende molecuul neemt de warmtestraling in zich op, waardoor de lucht er omheen ook opwarmt. De extra warmte wordt vervolgens in alle richtingen uitgestraald, dus ook terug naar de aarde.

Om warmtestraling te kunnen opnemen, moeten gasmoleculen een beetje kunnen trillen, waarbij de verdeling van elektrische lading binnen het molecuul een beetje verandert. Dat kan alleen als een gasmolecuul uit drie of meer atomen bestaat. Bron: DynamicScience.com.

Een voorwaarde om warmtestraling te kunnen absorberen is dat een molecuul asymmetrisch kan trillen. Simpele, rechte moleculen die uit slechts twee atomen bestaan, zoals zuurstof (O2) en stikstof (N2) kunnen dat niet, en zijn dus geen broeikasgassen. Broeikasgassen bestaan uit drie of meer atomen: bijvoorbeeld CO2 of methaan (CH4). Ook waterdamp (H2O) is een belangrijk broeikasgas.

Lees verder

De relatie tussen CO2 en temperatuur

Je komt ze zelfs in 2018 nog tegen, mensen die menen dat een verandering in de concentratie van het broeikasgas CO2 in de atmosfeer geen enkele invloed op de temperatuur heeft. Ze bestoken je met onduidelijke handgetekende grafiekjes of andere plaatjes van een dubieuze herkomst en verwijzen een paar eeuwen wetenschappelijk onderzoek en kennisopbouw simpelweg naar de prullenmand. Vanwege deze twitterervaringen en vragen die we via ons contactformulier krijgen, geven we hieronder een klein overzicht over de relatie tussen de hoeveelheid CO2 in de atmosfeer en de temperatuur op onze aardbol.

Er is wel degelijk een verband tussen deze twee zaken en dat is al héél lang bekend. In de jaren twintig van de 19e eeuw realiseerde Fourier zich al dat de atmosfeer een invloed uit moest oefenen op de temperatuur van de aarde. In 1859 startte Tyndall met metingen aan het absorptievermogen van gassen, hij toonde aan dat CO2, waterdamp en ozon infraroodlicht (warmtestraling) absorberen. Bijna 40 jaar later berekende Arrhenius met de hand hoeveel opwarming een verdubbeling van de CO2-concentratie zou geven. De klimaatwetenschap is geen “jonge wetenschap” zoals sommigen beweren, maar een al oude en volwassen wetenschap.

De aarde ontvangt energie van de zon en – om qua temperatuur in evenwicht te blijven – moet de aarde net zoveel energie als ze ontvangen heeft weer uitstralen naar de ruimte. Dat doet de aarde in de vorm van infraroodlicht. Uit de natuurkunde is bekend dat broeikasgassen zoals CO2 de warmtestraling afkomstig van de aarde gedeeltelijk absorberen en dat zorgt ervoor dat de aarde moeilijker energie kan uitstralen naar het heelal, met als gevolg een hogere temperatuur dan zonder broeikasgassen. Meer CO2 in de atmosfeer zorgt voor meer absorptie van die uitgaande warmtestraling en dat zorgt op zijn beurt dus voor een toename van de temperatuur zoals we vanaf circa 1850-1900 ook zien in de metingen. Wetenschappers zoals Arrhenius voorspelden al eind 19e eeuw dat een toename van de CO2-concentratie tot opwarming moet leiden. Het was een wetenschappelijke voorspelling die vervolgens is uitgekomen, in plaats van een verklaring achteraf.
Lees verder

Een wetenschappelijke check van klimaatmodellen

Schematische weergave van de stralingsbalans van de aarde. Bron: IPCC WG1 AR5

De spelers en volgers van ClimateBallTM kennen natuurlijk de gemakzuchtige pseudosceptische retoriek over klimaatmodellen die niet zouden deugen. Die is steevast gebaseerd op de misvatting dat klimaatmodellen een soort glazen bollen zouden zijn, die elk detail in het klimaat moeten kunnen voorspellen. Terwijl klimaatwetenschappers er geen geheim van maken dat dat niet zo is en dat modellen zeker hun beperkingen en onzekerheden hebben.

Klimaatmodellen simuleren de fysische processen in het klimaatsysteem. Die simulaties kunnen een beeld geven van het effect van veranderingen in de energiebalans (stralingsforceringen in klimaatterminologie) op die fysische processen. En van de interne variabiliteit in die processen. Niet al die factoren zijn voorspelbaar op basis van de fysica in de modellen. Klimaatmodellen voorspellen geen vulkaanuitbarstingen of wisselingen in zonneactiviteit en de toevallige schommelingen op korte termijn binnen het klimaatsysteem zijn ook niet voorspelbaar. Maar dat wil nog niet zeggen dat modellen de onderliggende fysica niet goed simuleren. En dat laatste bepaalt hoe bruikbaar een klimaatmodel voor bepaalde toepassingen en projecties is.

Waar pseudosceptici al jaren zijn blijven hangen in hun opwinding over het feit dat klimaatmodellen niet kunnen voorspellen wat op basis van de gesimuleerde fysica niet voorspelbaar is, pakt de wetenschap het anders aan. Wetenschappers zoomen in op de processen in en de eigenschappen van het klimaatsysteem die de modellen werkelijk simuleren. Ze zoeken naar verschillen tussen de simulaties en waarnemingen en naar verschillen tussen simulaties onderling. Dat doen ze niet om een makkelijk goed/fout-oordeel uit te kunnen spreken over modellen. Of over waarnemingen. Wetenschappers zoeken zo naar kennis en begrip. Als een wetenschapper begrijpt waarom een model afwijkt van de observaties, begrijpt hij iets meer van het systeem. En daarmee kan het model verbeterd worden. Dit geldt overigens niet alleen voor complexe klimaatsimulaties, maar voor elk wetenschappelijk model. En dus voor elke wetenschappelijke theorie, verklaring, of formule. Lees verder

Open discussie zomer 2016

De meteorologische zomer begint al bijna ten einde te lopen en het voorgaande Open Discussie draadje is overvol. Het aanmaken van een nieuwe, zomerse versie ondervond nogal wat vertraging mijnerzijds en daarmee zijn we gelijk bij een onderwerp aangeland:
Het gaat hier om meerdere traagheden. Veranderingen in onze emissies leiden slechts met vertraging tot een verandering in (de toename van) de broeikasgas-concentraties. Veranderde concentraties resulteren weliswaar meteen in een verandering van de stralingsbalans maar deze extra warmte, het stralingsoverschotaccumuleert traag in het klimaatsysteem en resulteert pas na verloop van tijd in een nieuwe evenwichtssituatie — waarbij de gestegen oppervlaktetemperaturen ervoor zorgen dat de uitgaande warmte weer in evenwicht is met de binnenkomende warmte.
Minstens zo belangrijk is de maatschappelijke en technische traagheid waar het gaat om emissiereductie:

The inertia of the climate system could be compared to that of a supertanker: if we want to change its course, it’s important to start steering the wheel in the desired direction in time.

De traagheid van het klimaatsysteem is als een supertanker: als we de koers willen wijzigen, is het belangrijk het stuurwiel tijdig in de gewenste richting te gaan draaien.

Bart Verheggen heeft hier zojuist een interessant stuk over geschreven op zijn Engelstalige blog. Vooruitlopend op een mogelijke Nederlandstalige versie wijs ik alvast op:

In deze Open Discussie kunnen inhoudelijke discussies over klimaatwetenschap en klimaatverandering worden gevoerd of voortgezet, die niet direct betrekking hebben op een specifiek blogstuk.

Nieuw onderzoek maakt lage klimaatgevoeligheid minder waarschijnlijk

climatesensitivity.001

Klimaatgevoeligheid, het lijkt een eenvoudig begrip: de temperatuurverandering als gevolg van een verdubbeling van de CO2-concentratie. De realiteit is een stuk ingewikkelder. Het overzicht van recente publicaties op de internetpagina van de workshop over klimaatgevoeligheid van afgelopen voorjaar geeft een aardig beeld van die ingewikkeldheid. Het grote aantal feedbacks dat op zeer uiteenlopende tijdschalen een rol speelt maakt niet alleen het nauwkeurig bepalen van de klimaatgevoeligheid lastig; ook bij de interpretatie liggen er wat voetangels en klemmen op de loer. Om de risico’s van klimaatverandering voor mens en natuur te bepalen, is bijvoorbeeld het tempo van de verandering, en dus de klimaatgevoeligheid op termijn van ruwweg een eeuw, minstens zo belangrijk als de uiteindelijke opwarming na duizenden jaren. Aan de andere kant: om resultaten van paleoklimatologisch onderzoek te vertalen naar het huidige klimaat, is ook inzicht nodig in langetermijneffecten.

De klimaatwetenschap heeft dan ook verschillende begrippen voor de klimaatgevoeligheid op verschillende tijdschalen. De twee meest gebruikte zijn:

  • Equilibrium Climate Sensitivity (ECS): de temperatuurstijging als het klimaatsysteem na een verdubbeling van de CO2-concentratie weer in evenwicht is. Maar er zit een adder onder het gras. Het begrip ECS komt uit het Charney-rapport uit 1979 – met een beetje goede wil is dat rapport te beschouwen als het begin van de wetenschappelijke consensus (pdf) over de menselijke invloed van het klimaat – en het beperkt zich dan ook tot de feedbacks die in dat rapport werden meegenomen. Feedbacks op geologische tijdschaal, ten gevolge van bijvoorbeeld het smelten van grote ijskappen of veranderingen in de biosfeer, zijn er niet bij ingegrepen. ECS wordt ook wel Charney sensitivity genoemd.
  • Transient Climate Respons (TCR): de opwarming na 70 jaar, wanneer de CO2-concentratie elk jaar met 1% toeneemt. Waarom 70 jaar? Omdat de CO2-concentratie bij een jaarlijkse toename van 1% na 70 jaar is verdubbeld. TCR geeft een indicatie van de klimaatgevoeligheid die voor onze samenleving het meest relevant was: de respons van het klimaatsysteem die we binnen één of enkele generaties kunnen verwachten.

Klimaatgevoeligheid op geologische tijdschaal, met inbegrip van alle trage feedbacks, heet Earth System Sensitivity (ESS). ECS en ESS van elkaar onderscheiden kan lastig zijn. En dan is er ook nog de Effective Climate Sensitivity, een schatting van de ECS op basis van een vereenvoudigd model, die door veel wetenschappers als een schatting van de ondergrens wordt gezien. Ik durf mijn hand er niet voor in het vuur te steken dat deze termen altijd helemaal consequent worden gebruikt. Lees verder

Is het gat in de energieboekhouding van de aarde gedicht?

De tekening bij dit stuk is van Marije Mooren

Missing the Heat. Tekening van Marije Mooren

Om maar met de deur in huis te vallen: de Koppenwet van Betteridge – als de kop boven een artikel eindigt met een vraagteken, is het antwoord: nee – is niet van toepassing op de kop hierboven. Maar het antwoord op de vraag is ook zeker geen volmondig: ja. Wat er wel aan de hand is: vorige maand verscheen er een artikel dat een bijzonder interessant licht werpt op het energiebudget van het klimaatsysteem, en dus van de aarde. Het soort artikel dat de geschiedenis in kan gaan als het begin van een behoorlijke stap vooruit in de klimaatwetenschap. Of als een interessant idee dat door aanvullend onderzoek onderuit wordt gehaald.

Nu de suspense zo ver is opgevoerd is het tijd voor een afknapper, de titel van het artikel: “Distinct energy budgets for anthropogenic and natural changes during global warming hiatus” van Xie, Kosaka en Okumura. Ja hoor, weer die “hiatus”. Lewandowsky zal er wel van gruwen. Niet helemaal onterecht. Want veel meer dan over een opwarmingspauze, gaat het artikel over hoe het klimaatsysteem reageert op veranderingen als gevolg van klimaatforceringen en interne variabiliteit en de gevolgen daarvan voor de energiebalans. Ofwel: over feedbacks in het klimaatsysteem.

We duiken hier dus, ter afwisseling van alle mediaberichtgeving in de afgelopen weken over de Parijse perikelen, diep de klimaatwetenschap in. De wetenschap over de energiebalans van de aarde, om precies te zijn. Of de stralingsbalans; omdat de aarde alleen via straling energie uit kan wisselen met het heelal (een enkel uit de atmosfeer ontsnappend gasmolecuul, of binnenkomend deeltje ruimtestof buiten beschouwing gelaten), komt dat op hetzelfde neer. Inzicht in de stralingsbalans, en daarmee in de energiehuishouding van het klimaatsysteem, is de sleutel tot begrip van veranderingen in het klimaat. Lees verder

Toename van CO2 versterkt het broeikaseffect

Metingen aan de infraroodstraling die door de atmosfeer naar de aarde terug wordt gezonden, laten zien dat de stijgende CO2-concentratie heeft geleid tot een versterking van het broeikaseffect: meer en meer infraroodstraling in precies die golflengten waar CO2 absorbeert, wordt teruggestraald naar het aardoppervlak.

Broeikasgassen in de atmosfeer absorberen infrarood licht dat door de aarde wordt uitgestraald en zenden dat vervolgens in alle richtingen weer uit. Het teruggestraalde infrarode licht zorgt ervoor dat de aarde en de oceanen warmer zijn dan ze zouden zijn zonder de aanwezigheid van broeikasgassen: het broeikaseffect. Zonder dit broeikaseffect was het op aarde gemiddeld circa -18 °C. Als de concentratie aan broeikasgassen in de atmosfeer toeneemt, wordt het broeikaseffect versterkt. Figuur 1 geeft de uitgestraalde infraroodstraling door de aarde als functie van het golfgetal (het omgekeerde van de golflengte). Daarin is duidelijk te zien dat broeikasgassen zoals CO2, waterdamp of CH4 bij bepaalde golflengten de uitstraling naar het heelal toe verminderen. Het grote gat rond 667 cm-1 (golflengte 15 µm) wordt veroorzaakt door CO2.

Figuur 1. Uitgaande straling bij de top van de atmosfeer met daarin de absorptie bij bepaalde golflengten van diverse broeikasgassen. De rode lijn is de zogenaamde ‘black body’ emissie van 294 °K. Bron NASA.

Lees verder

Arctische amplificatie en het verre infrarood: de ontdekking van een nieuwe feedback in het klimaatsysteem?

De kop boven dit stuk zal er geen twijfel over laten bestaan: we duiken weer eens de harde wetenschap in. Dat mag wel weer een keer, al was het alleen maar om te laten zien waar de eenentwintigste-eeuwse wetenschap nu werkelijk mee bezig is, terwijl elders op het web sommigen eindeloos blijven hangen in wetenschappelijke discussies uit de twintigste of zelfs de negentiende eeuw. Het onderwerp van dit stuk ligt in het verlengde van mijn verhaal over de stralingsbalans; de aanleiding is een artikel in PNAS dat verscheen op het moment dat ik dat verhaal bijna af had: “Far-infrared surface emissivity and climate” van Feldman et al. (een persbericht over het onderzoek is te vinden op de site van het Berkely lab).

Ik ben geen klimaatwetenschapper, ik zou mezelf ook niet zo gauw een deskundige noemen, maar ik heb in de loop der jaren wel het nodige gezien en gelezen over het onderwerp. Het gebeurt dan ook niet meer zo vaak dat ik in de wetenschappelijke literatuur iets tegenkom waar ik nog helemaal niet bij stil had gestaan. Het artikel van Feldman et al. is zo’n zeldzame eye-opener. Ook dat was een reden om er verder in te duiken en er iets over te schrijven.

Dat eigenschappen van het aardoppervlak invloed kunnen hebben op de stralingsbalans aan de top van de atmosfeer – en dus op het klimaat – is geen nieuws. De belangrijkste factor is de albedo: de mate waarin het oppervlak zonlicht direct reflecteert. Maar dat is niet het enige. Eigenschappen van het oppervlak kunnen ook een behoorlijke invloed hebben op de karakteristieken van de warmtestraling die naar de atmosfeer en uiteindelijk het heelal uitstraalt. In het stuk over de stralingsbalans van eerder deze maand beperkte ik me voor wat die uitstraling betreft tot de wet van Stefan-Boltzmann. Als eerste benadering is dat prima, en het geeft zeker een goed beeld van het principe, maar strikt genomen geldt die wet alleen voor een “zwarte straler”. Nog belangrijker: voor het precieze effect op het klimaat is niet alleen de totale hoeveelheid warmtestraling van belang, maar ook het spectrum: de verdeling over verschillende golflengtes van die straling. Voor een zwarte straler geeft de wet van Planck het spectrum. Voor echte materie kan de uitstraling behoorlijk anders zijn dan die van een zwarte straler. De werkelijke uitstraling wordt gevat in het begrip emissiviteit.

De Emissiviteit ε

Emissivity
Uit de wet van Planck volgt de hoeveelheid en het spectrum van de straling die een zwarte straler uitzendt bij een bepaalde temperatuur. Echt bestaande objecten stralen nooit “ideaal”. De werkelijke uitstraling is anders en deze kan bij geen enkele golflengte meer bedragen dan die van een zwarte straler bij dezelfde temperatuur. De emissiviteit (ε ) is de verhouding tussen werkelijk uitgezonden straling en de uitstraling van een zwarte straler bij dezelfde temperatuur, over het volledige spectrum of bij een specifieke golflengte of band van golflengtes. De emissiviteit is nooit groter dan 1.

Lees verder