Categorie archief: Zeespiegelstijging en ijs

Invloed van weersextremen op de massabalans van ijskappen

Massaverlies van ijskap van Antarctica sinds 2002. Bron: Hanna et al.

‘A single Antarctic heatwave or storm can noticeably raise the sea level’, is de kop boven een artikel op The Conversation van alweer een tijdje geleden. Het bleek geen resultaat te zijn van nieuw wetenschappelijk onderzoek, maar een opvallende constatering uit een overzichtsartikel dat op een rijtje zet wat er bekend is over het smelten van ijskappen op verschillende tijdschalen. Het blijkt dat een korte periode van bijvoorbeeld extreme warmte of regenval een grote invloed kan hebben op de massabalans van de ijskappen van Groenland en Antarctica over een heel jaar. Zo’n periode duurt soms maar een week, of nog minder. Een extreem hoeft overigens niet altijd tot massaverlies te leiden. Het kan ook de andere kant op gaan, als er in korte tijd heel veel sneeuw valt.

Massaverlies van de Groenlandse ijskap sinds 2002. Bron: Hanna et al.

Het mag dan geen helemaal nieuw onderzoeksresultaat zijn, maar dat maakt het niet minder belangrijk. Want het is een flinke complicatie bij het voorspellen van de hoeveelheid en, vooral, de snelheid van de toekomstige zeespiegelstijging. Veranderingen in extremen kunnen een aanzienlijke invloed hebben, en wat er precies met extremen zal gebeuren is een stuk lastiger te voorspellen dan wat er kan veranderen in bijvoorbeeld de gemiddelde temperatuur of hoeveelheid neerslag. En daar zit natuurlijk ook al de nodige onzekerheid in; al is het maar omdat we niet weten hoeveel broeikasgassen we in de komende decennia nog in de atmosfeer gaan brengen.

Lees verder

Zijn de dagen van de ijskap op West-Antarctica geteld?

Een ijsberg in het zee-ijs in de Amundsenzee. Foto: NASA / Maria-Jose Vinas

Een artikel van onderzoekers van de British Antarctic Survey trok afgelopen week de nodige aandacht. De onderzoekers concluderen dat het niet meer te voorkomen is dat er in de Amundsenzee bij West-Antarctica in de loop van deze eeuw een kantelpunt wordt bereikt, met ingrijpende gevolgen voor de zeespiegelstijging. In dit gebied ligt genoeg ijs om de zeespiegel met 5,3 meter te laten stijgen. In Nederland zou dat nog meer zijn, door zwaartekracht-effecten. Het artikel zegt niet dat ál dit ijs zal verdwijnen. Maar wel dat enkele meters zeespiegelstijging in de komende eeuwen redelijkerwijs niet meer te voorkomen zijn en dat de ijskap van West-Antarctica in zijn huidige vorm niet te behouden is. De snelheid waarmee dit gebeurt hangt mede af van de onvoorspelbare interne variabiliteit van het klimaat in dit gebied. De auteurs van het artikel zeggen het zo:

The opportunity to preserve the WAIS [West Antarctic Ice Sheet – HC] in its present-day state has probably passed, and policymakers should be prepared for several metres of sea-level rise over the coming centuries. Internal climate variability, which we cannot predict or control, may be the deciding factor in the rate of ice loss during this time.

Anders dan je misschien zou verwachten is dit geen glaciologisch, maar een oceanografisch onderzoek. Met wel een belangrijk raakvlak met de glaciologie. De kwetsbaarheid van de ijskap in dit gebied is bekend. Het ijs rust grotendeels op een bodem die beneden de zeespiegel ligt. Aan de randen loopt dit ijs uit op dikke, op het zeewater drijvende ijsplaten. Het smelten van dat drijvende ijs heeft weliswaar geen directe invloed op de zeespiegel, maar er is wel een groot indirect effect. De ijsplaten remmen namelijk de stroming van het ijs in de achterliggende gletsjers af. Geheel of gedeeltelijk smelten van een ijsplaat leidt tot een snellere stroming van zo’n gletsjer. De grondlijn, waar de op de zeebodem liggende gletsjer overgaat in een drijvende ijsplaat, kan zich dan terugtrekken. Door specifieke omstandigheden bij West-Antarctica geeft dat een extra versnelling: de bodem heeft landinwaarts een neerwaartse helling; een terugtrekkende grondlijn komt dus dieper te liggen en hierdoor kan een gletsjer sneller stromen. In het ergste geval wordt de gletsjer instabiel en verdwijnt hij volledig.

Lees verder

Ook bij Antarctica vertraagt de circulatie van de oceaan

‘Watervallen’ van koud en zout water vanaf de continentale plaat van Antarctica naar de diepzee. Bron: Matthew England

Er is de afgelopen jaren, ook bij ons, regelmatig aandacht geweest voor een vertraging in de circulatie van het noordelijk deel van de Atlantische Oceaan, als gevolg van het smelten van het ijs op Groenland. Inmiddels wordt in de wetenschappelijke literatuur ook het nodige geschreven over een vergelijkbaar verschijnsel bij Antarctica. Vergelijkbaar, maar niet identiek. De situatie is bij Antarctica namelijk behoorlijk anders dan bij Groenland. Zo vormt de oceaan bij Groenland het eindpunt van het deel van de oceanische transportband dat warmte vanuit de tropen noordwaarts vervoert. Het heeft onder meer invloed op ons klimaat in West-Europa. Bij Antarctica cirkelt de hoofdstroom aan het oppervlak rond het continent, waardoor dat wordt afgeschermd van water uit warmere streken. Natuurlijk is er nog wel wat uitwisseling – er staat geen enorme dam rond de Zuidelijke Oceaan – maar die is vrij beperkt.

Schematische weergave van de mondiale circulatie in de oceanen. Bron: Wikipedia.
Lees verder

Koude ijsplaten bij Antarctica zijn mogelijk kwetsbaarder dan gedacht

Poolonderzoeker bij de Ross-ijsplaat. Foto: Michael van Woert / NOAA Photo Library

We hebben hier in de afgelopen jaren regelmatig geschreven over ijsplaten, de drijvende uitlopers van mariene gletsjers. (Dat zijn gletsjers die in direct contact staan met zeewater, omdat ze op een bodem rusten die beneden zeeniveau ligt). Het smelten van dat drijvende ijs heeft geen directe invloed op de zeespiegel, volgens de wet van Archimedes. Indirecte invloed is er wel, omdat ijsplaten de stroming van de achterliggende gletsjer (of gletsjers) tegenhouden. Als een ijsplaat kleiner wordt of helemaal verdwijnt gaat de gletsjer sneller stromen, of kan hij zelfs instabiel worden en helemaal verdwijnen.

De meeste aandacht gaat uit naar ijsplaten bij West-Antarctica en dan met name die in de Amundsenzee. Eind 2021 voorspelde een groep wetenschappers dat die ijsplaat vermoedelijk binnen vijf tot tien jaar helemaal op zal breken in ijsbergen. Deze ijsplaat wordt vooral van onderaf verzwakt, door opwarmend zeewater. Maar de verzwakking kan ook van boven komen. Dat gebeurde bijvoorbeeld bij de Larsen B ijsplaat bij het Antarctisch Schiereiland. Door opwarming van het oppervlak ontstonden daar smeltwatermeren. Kloven en scheuren in het ijs groeiden door de druk die dat water uitoefende tot ze de onderkant van het ijs bereikten. En uiteindelijk brak de ijsplaat in stukken. Hydrofracturing heet dit, in glaciologen-jargon. Een gemiddelde jaartemperatuur van -5 °C blijkt daar een kritische grens te zijn. Wordt het warmer, dan kan een ijsplaat op deze plek niet overleven.

Melchior van Wessem van het Institute for Marine and Atmospheric Research Utrecht heeft met enkele collega’s onderzocht of die kritische grens hetzelfde is voor andere ijsplaten bij Antarctica. Het resultaat van dat onderzoek is gepubliceerd in Nature Climate Change. Het onderzoek heeft gekeken naar de omstandigheden waarbij smeltwatermeren kunnen ontstaan. Natuurlijk speelt de temperatuur een belangrijke rol, maar die is niet allesbepalend. Ook de hoeveelheid water die opgenomen kan worden in de sneeuwlaag op het ijs is van belang. En die hangt af van hoeveel sneeuw er valt. Verse sneeuw bevat veel open ruimte, die als een spons water op kan nemen. En ook in firn (wat oudere sneeuw, die wat is samengedrukt of al wat smeltwater heeft opgenomen) zitten nog open ruimtes. Pas als al die ruimte is opgevuld kan er bovenop het ijs een laag water ontstaan. Sneeuw biedt dus een zekere mate van bescherming van ijsplaten tegen opbreken. Het Antarctisch Schiereiland is relatief warm, maar er valt ook veel sneeuw, eenvoudigweg omdat er uit warmere lucht meer neerslag kan vallen. IJsplaten in koudere gebieden zouden minder bescherming kunnen krijgen van sneeuw.

Lees verder

De ongewisse toekomst van de Thwaitesgletsjer

Front van de Thwaitesgletsjer in 2020. Foto: David Vaughan/thwaitesglacier.org.

Eind vorig jaar trok de Thwaitesgletsjer op West-Antarctica de aandacht toen een groep onderzoekers een online persconferentie hield. Daar maakten ze bekend dat de ijsplaat die de snelstromende gletsjer in bedwang houdt, dreigt op te breken. De verwachting is dat dat binnen vijf tot tien jaar al gebeurt. Thwaites en de naburige Pine Islandgletsjer zijn de delen van de Antarctische ijskap die het meest kwetsbaar zijn voor klimaatverandering. En dus wordt er veel wetenschappelijk onderzoek gedaan in dit gebied. Dat levert regelmatig interessant nieuws op, dat helaas zelden geruststellend is over de toekomst van die gletsjers en de stijging van de zeespiegel in de komende eeuwen.

Ligging van de Thwaitesgletsjer. Bron: thwaitesglacier.org.
Lees verder

Nieuws over de Thwaitesgletsjer


Foto: Aleksandra Mazur

Ergens tussen alle Coronapersconferenties in was er ook eentje van een stel wetenschappers over hun bevindingen van verschillende onderzoeken op, onder en in de Thwaitesgletsjer. Waarschijnlijk is deze laatste persconferentie niet zo goed bekeken als die van Rutte, De Jonge en Van Dissel, maar zij is wel degelijk interessant en ook de ijswetenschappers hadden helaas niet zo’n goed nieuws. De Thwaitesgletsjer is een grote gletsjer gelegen op West-Antarctica. De gletsjer is aan de zeezijde circa 120 km breed met een totale oppervlakte vergelijkbaar met die van Groot-Brittannië en bevat een hoeveelheid ijs die, indien alles zou smelten, overeenkomt met 65 cm zeespiegelstijging. Als gevolg van de opwarming van de aarde ondergaat deze gletsjer grote veranderingen, het is een van de snelst stromende gletsjers met een groot massaverlies. Deze gletsjer staat daarom volop in de belangstelling van de wetenschap, zie ook ons stuk daarover van april 2020: West-Antarctica en de Thwaitesgletsjer.

De persconferentie van de Thwaites-onderzoekers was op maandag 13 december op de jaarlijkse grote bijeenkomst van de American Geophysical Union. Enkele zaken daaruit die ik interessant vond beschrijf ik in het kort in dit blogstuk. Een stuk met reacties van Nederlandse onderzoekers is op NU.nl te vinden. Onderaan het blogstuk is de volledige persconferentie te bekijken.

De schematische weergave hieronder illustreert de belangrijkste aanjagers van grote veranderingen en zelfs een mogelijke ondergang van het oostelijk deel van de ijsplaat van de Thwaitesgletsjer. Deze ijsplaat drijft weliswaar op het water, maar geeft ook steun aan de achterliggende gletsjer, waarvan een substantieel deel boven de zeespiegel ligt.


Lees verder

Nieuwe zeespiegelprojecties: de asymmetrische onzekerheid blijft

Een mariene ijskap. Foto: Bethan Davies / AntarcticGlariers.org

In Nature stonden vorige week twee artikelen met nieuwe projecties van de zeespiegelstijging. Of, om precies te zijn: de te verwachten bijdrage van het smelten van landijs daaraan. Voor de totale stijging moet daar nog de bijdrage van thermische expansie van zeewater bij worden opgeteld. Volgens het IPCC Speciale Rapport over de oceanen en de cryosfeer is dat, afhankelijk van hoeveel het opwarmt, zo’n 15 tot 30 centimeter aan het eind van deze eeuw. En, om helemaal compleet te zijn, er wordt ook nog enkele centimeters stijging verwacht als gevolg van grondwateronttrekking en veranderingen in opslag van zoet water op land.

De grootste onzekerheden zitten in de bijdrage van het landijs en dan vooral in die van de ijskappen van Groenland en Antarctica. De reden daarvoor is eenvoudig: er hoeft maar een fractie van al dat ijs te smelten om de zeespiegel een halve of een hele meter te laten stijgen. Hoe groot de fractie die smelt precies zal zijn en hoe snel dat smelten gaat is niet zo eenvoudig te voorspellen.

Er zijn nogal wat variabelen die invloed kunnen hebben op het smeltproces: de temperatuur, de hoeveelheid neerslag, de eigenschappen van het ijs en van de bodem waar het op ligt, enzovoort. Bij ijs dat op de zeebodem rust komen daar dan nog oceaanstromingen, de temperatuur van het zeewater en de eigenschappen van de zeebodem bij. Modellen die de bepalende processen gedetailleerd simuleren zijn behoorlijk complex. De rekentijd op supercomputers die nodig zijn voor dergelijke simulaties is duur en dus zit er een grens aan het aantal simulaties dat ijsonderzoekers uit kunnen voeren.

Tamsin Edwards heeft een statistische methode toegepast om uit bestaande simulaties extra informatie te peuteren. Het artikel met haar resultaten telt maar liefst 84 auteurs. Dat het er zoveel zijn komt vooral omdat Edwards een groot aantal ijskap- en gletsjermodellen heeft geanalyseerd (de modellen die meedoen in het Ice Sheet Model Intercomparison Project ISMIP6 en in het Glacier Model Intercomparison Project GlacierMIP) en de onderzoeksgroepen die die modellen hebben ontwikkeld allemaal mee hebben gewerkt. Met haar methode kan Tamsin Edwards eerdere berekeningen van die modellen “vertalen” naar de SSP-scenario’s die in het komende IPCC-rapport worden gebruikt.

De berekeningen laten een aanzienlijk verschil zien tussen de hoeveelheid ijs die smelt bij 1,5°C en bij 2°C opwarming. Bij 1,5°C zorgt smeltend landijs naar verwachting voor zo’n 13 centimeter zeespiegelstijging in 2100, bij 3°C (de te verwachten opwarming op basis van het totaal aan nu ingediende plannen in het kader van het Akkoord van Parijs) is dat bijna het dubbele: 25 centimeter. Vooral voor de hoeveelheid ijssmelt op Groenland maakt die anderhalve graad een groot verschil, ongeveer een factor 3. Voor berggletsjers is dat een factor twee. Voor Antarctica maakt een anderhalve graad weinig uit, volgens de modellen. Maar daar zit wel een adder onder het gras: asymmetrische onzekerheid.

Lees verder

Zeespiegelvariabiliteit in en rondom de Noordzee

Gastblog van Tim Hermans

Natuurlijke schommelingen in het jaarlijks gemiddelde zeeniveau in de Noordzee kunnen oplopen tot meer dan 10 centimeter, bijvoorbeeld in Den Helder. Die grote variaties van het ene op het andere jaar vormen een belangrijk deel van het lokaal gemeten zeespiegelsignaal in relatief korte observatie-reeksen zoals satellietmetingen (beschikbaar vanaf 1993). Bij het bepalen van de mondiaal gemiddelde zeespiegelstijging op basis van satellietmetingen (iets meer dan 3 mm/jaar in de periode 1993-2015; Oppenheimer et al., 2019), speelt inter-jaarlijkse variabiliteit een relatief kleine rol. Dit omdat de zeespiegelvariabiliteit in verschillende regio’s dan min of meer wordt uitgemiddeld. Echter, regionaal kan natuurlijke variabiliteit van het zeeniveau op korte termijn de zeespiegelstijging als gevolg van klimaatverandering overschaduwen. Dit bemoeilijkt ook de vergelijking (bijvoorbeeld in de Zeespiegelmonitor, 2018) tussen recente waarnemingen en projecties van regionale zeespiegelstijging in scenario’s voor de toekomst (bijvoorbeeld van Van den Hurk et al., 2014 of Vermeersen et al., 2018) of tussen waarnemingen en projecties van opwarming. Die projecties zijn namelijk gebaseerd op klimaatmodellen, die wel zeespiegelvariabiliteit simuleren, maar niet per se met dezelfde timing als zeespiegelvariabiliteit in de werkelijkheid.

Regionale zeespiegelstijging of zelfs een versnelling van die stijging zou een stuk makkelijker te detecteren zijn zonder inter-jaarlijkse zeespiegelvariabiliteit. Voor een deel van de variabiliteit van het zeeniveau kun je corrigeren, mits je goed begrijpt wat de oorzaak hiervan is. Een studie uit 2017 van Theo Gerkema (NIOZ) en Matias Duran-Matute (TU Eindhoven) (Gerkema and Duran-Matute, 2017) is hier een mooi voorbeeld van. Gerkema en Duran-Matute laten zien dat de inter-jaarlijkse variabiliteit van de zeespiegel aan de Nederlandse kust nauw samenhangt met de gemiddelde kracht en de richting van de wind in dat jaar. In een jaar waarin er gemiddeld een sterke wind vanuit het (zuid)westen waait is het gemiddelde zeeniveau aan de Nederlandse kust hoger, en andersom, omdat de wind het water als het ware opstuwt in richting van de Nederlandse kust. Het resultaat is een positieve correlatie tussen het jaarlijks gemiddelde zeeniveau en windenergie in de west/oost richting. Het gemeten windsignaal kun je vervolgens gebruiken om het gemeten zeeniveau te corrigeren voor schommelingen die worden aangedreven door de wind. Het resultaat is een meetsignaal met een stuk minder ruis, waardoor de foutmarge van de geschatte zeespiegeltrend met een factor 4 kan afnemen (Gerkema and Duran-Matute, 2017).

Een ander voorbeeld van inter-jaarlijkse variabiliteit is te zien in klimaatmodellen. Voor dezelfde klimaatmodellen als waarop zeespiegelprojecties voor de 21e eeuw gebaseerd zijn (bijv. Church et al., 2013; Van den Hurk et al., 2014; Vermeersen et al., 2018), zijn ook simulaties beschikbaar waarbij de concentratie broeikasgassen in de atmosfeer constant wordt gehouden op het niveau van voor de industriële revolutie (zogenaamde ‘pre-industrial control runs’, Taylor et al., 2012). Ondanks dat het zeeniveau in deze simulaties dus niet wordt beïnvloed door klimaatverandering, zijn er in zulke simulaties over periodes van 20 jaar toch trends in het zeeniveau van meer dan 2 mm/jaar in de Noordzee te vinden (Tinker et al., 2020). Die trends moeten dus wel worden veroorzaakt door de interne variabiliteit van het model. De trend in het zeeniveau in de Noordzee zoals afgeleid uit satellietmetingen is ongeveer net zo groot (Sterlini et al., 2017), en dus niet zo makkelijk van die variabiliteit te onderscheiden.
Lees verder

Kunnen we de 20e-eeuwse zeespiegelstijging verklaren?

Gastblog van Thomas Frederikse

Dankzij een uitgebreid wereldwijd netwerk van peilmeetstations en allerlei paleo-indicatoren weten we dat de zeespiegel sinds het begin van de 20e eeuw veel harder stijgt dan in de eeuwen daarvoor [1,2]. Zeespiegelstijging is dus niet alleen een dreigend toekomstfenomeen. Toch was er nog een onopgelost probleem met de 20e-eeuwse zeespiegelstijging. Want de schattingen van de werkelijke stijging waren namelijk hoger dan de berekende en bij elkaar opgetelde bijdragen van het smelten van gletsjers en ijskappen en het uitzetten van de oceaan door de steeds hogere watertemperatuur (thermische expansie).

Dit probleem kwam voor het eerst ter sprake in het artikel ‘Twentieth Century Sea Level: An Enigma’ [3] van de beroemde oceanograaf Walter Munk, waarin hij stelt dat “the historic [sea-level] rise started too early, has too linear a trend, and is too large”. Hij kwam op deze conclusie door schattingen van het gesmolten ijs en thermische expansie te vergelijken met de gemeten stijging, en het sommetje klopte niet: er was een stijging in de gemeten zeespiegel die niet te verklaren was. Jaren later speelt dit probleem in mindere mate nog steeds: in het recente ‘IPCC Special Report on the Ocean and Cryosphere in a Changing Climate’ (SROCC) [4], is dit gat nog steeds aanwezig: de getallen in tabel 4.1 tellen nog steeds niet mooi op.

Het is goed om te bedenken dat dit ‘gat’ zich ver achter de komma afspeelt, en vooral voer is voor de cijferfetisjisten onder de klimaatwetenschappers. Nu hebben we de beschikking over satellietdata, en zijn er duizenden autonoom ronddrijvende oceaanthermometers die hele schatten aan data produceren, en al die data toont aan dat sinds de jaren 90 het sommetje prima klopt [4,5]. Toch knaagt er iets: zien we misschien een proces over het hoofd?

Figuur 1. Peilmeetstations waarmee we de globale zeespiegelstijging hebben bepaald. Hoe dikker het bolletje, hoe langer de meetreeks. Rechts zie je de ontwikkeling van het aantal meetstations per oceaan in de tijd.

Lees verder

De wetenschap heeft de ijskap van Groenland nog niet opgegeven

Een nieuw onderzoek naar het ijsverlies van Groenland leverde de afgelopen dagen nogal wat paniekreacties op. Het bijbehorende persbericht droeg daar ongetwijfeld aan bij, omdat dat spreekt van een “point of no return”. Dat kan de indruk wekken dat het definitieve kantelpunt bereikt zou zijn en dat de hele ijskap van Groenland gedoemd zou zijn om te verdwijnen. Dat is naar alle waarschijnlijkheid nog niet het geval.

Het is een gedetailleerde glaciologische studie naar het ijsverlies van ruim 200 gletsjers die deel uitmaken van de ijskap van Groenland, aan de hand van satellietgegevens en lokale metingen. Er blijkt begin deze eeuw een stapsgewijze versnelling te zijn geweest in de snelheid waarmee het ijs smelt. Ian Howat, een van de onderzoekers, vat het op de site van CNN zo samen:

We’ve passed the point of no return but there’s obviously more to come. (..) Rather than being a single tipping point in which we’ve gone from a happy ice sheet to a rapidly collapsing ice sheet, it’s more of a staircase where we’ve fallen off the first step but there’s many more steps to go down into the pit.

Hoeveel treden er precies zijn en hoe hoog die eerste trede is is nog wel onduidelijk. Lees verder