Tagarchief: oceanen

De invloed van de mens op het zuurstofgehalte in de atmosfeer en de oceanen

Zuurstof is het tweede meest voorkomende element op aarde. Circa 21% van de atmosfeer bestaat uit zuurstofgas; het wordt door ons ingeademd en verbruikt bij de interne verbrandingsprocessen van planten en dieren. Als onderdeel van het molecuul water vormt zuurstof het hoofdbestanddeel van de oceanen, maar gelukkig voor de vissen is zuurstofgas ook in opgeloste vorm in water aanwezig. Zuurstof is niet altijd in onze atmosfeer aanwezig geweest. Van circa 2,4 tot 2,1 miljard jaar geleden is volgens onze kennis van het geologische verleden de concentratie in de atmosfeer sterk toegenomen, een gebeurtenis die bekend staat als de “Great Oxidation Event” of “Great Oxygenation Event”. Dit alles dankzij het leven dat de fotosynthese had ontdekt.

Bij fotosynthese wordt, gebruik makend van zonne-energie, CO2 omgezet in complexere koolstofverbindingen die ook tot voedsel dienen voor andere soorten leven. In de biologie heet dit vastleggen van koolstof in organische verbindingen (bijv. zetmeel) de koolstofassimilatie. Het ‘verbranden’ van deze verbindingen vindt zowel plaats door plantaardig als dierlijk leven. Een deel van de koolstofverbindingen die in het verre verleden zijn onttrokken aan deze cyclus van vastleggen en verbranden, vormen de fossiele grondstoffen zoals aardolie, kolen en gas. Ons verbruik van deze grondstoffen door verbranding en de daaraan gerelateerde stijging van de broeikasgasconcentraties in de atmosfeer, heeft – zoals bekend – een duidelijk merkbare invloed op onze leefwereld zoals een oplopende temperatuur, smeltende ijskappen en een stijging van het zeeniveau. Minder bekend is echter dat ons stookgedrag ook van invloed is op het zuurstofgehalte in de atmosfeer en in de oceanen.

Zij die een beetje hebben opgelet op de middelbare school weten dat bij het verbranden van koolstofverbindingen CO2 en water ontstaan. Bij dit verbrandingsproces (of oxidatie) wordt er zuurstof verbruikt. Logischerwijs zou je dus zeggen dat het verbranden van olie, gas of kolen moet leiden tot een toename van de CO2-concentratie in de atmosfeer en dat tegelijkertijd de zuurstofconcentratie evenredig zou moeten dalen. Beide zijn dan ook waargenomen, zie de grafiek in figuur 1. Interessant in deze figuur is ook de invloed van de seizoenen. Tijdens de wintermaanden neemt de CO2-concentratie toe (groene lijnen) om in de zomermaanden weer af te nemen als de planten en bomen weer groeien. Deze verandering zie je in omgekeerde vorm terug bij de zuurstofconcentratie in de atmosfeer (blauwe lijnen). Deze seizoensinvloed is groter voor het noordelijk halfrond dan voor het zuidelijk halfrond doordat het oppervlakte aan land op het noordelijk halfrond veel groter is en er daar dus ook meer bomen en planten aanwezig zijn.

Figuur 1. De verandering van de CO2– en de zuurstofconcentratie in de atmosfeer beide gemeten op twee verschillende plekken op aarde. MLO = Mauna Loa, SPO = South Pole, ALT = Alert en CGO = Cape Grim. MLO en ALT liggen op het noordelijk halfrond en SPO en CGO op het zuidelijk halfrond. Bron: figuur 6.3a uit het IPCC AR5 rapport.

Lees verder

Traagheid in het klimaatsysteem

Stel je voor dat je op een groot schip zit dat op een aanvaring afstevent. Wat zou jij doen? Zou je volle kracht vooruit blijven gaan totdat je het object waar je tegenaan dreigt te varen als het ware aan kunt raken? Of zou je proberen om tijdig van koers te veranderen, in de wetenschap dat een dergelijke koersverandering voor zo’n groot schip een veel tijd in beslag neemt?

De traagheid van het schip impliceert dat je op tijd moet handelen om een aanvaring te voorkomen.

Het klimaatsysteem heeft ook een enorme traagheid ingebouwd. En net als bij een groot schip betekent dit dat vroegtijdige actie nodig is als we het verdere verloop van het klimaat willen bijsturen. Deze traagheid is een cruciaal aspect van het klimaatsysteem, zowel wetenschappelijk als maatschappelijk – maar in het maatschappelijk debat is het een zeer ondergewaardeerd en onbekend aspect.

inertia

De traagheid van het klimaatsysteem is als een supertanker: als we koers willen wijzigen moeten we het roer tijdig in de gewenste richting draaien.

Waarom is die traagheid zo belangrijk? Omdat intuïtief veel mensen denken dat zodra we onze CO2 uitstoot sterk hebben gereduceerd (wat we niet hebben gedaan), het probleem dan opgelost zal zijn. Maar dat is niet het geval – bij lange na niet. Zelfs als we de CO2-uitstoot tot nul terugbrengen over een realistische tijdsperiode, dan zal de CO2 concentratie in de atmosfeer – en dus ook de mondiaal gemiddelde temperatuur- nog heel lang hoger blijven dan die van nature zou zijn geweest. Voor vele duizenden jaren, zoals te zien is in onderstaande figuur. De totale hoeveelheid CO2 die we in de loop van een paar honderd jaar de lucht in brengen zal het klimaat en daarmee het leven op deze planeet voor honderdduizenden jaren beïnvloeden. Als we de mate van opwarming waaraan de aarde voor lange tijd gecommitteerd zal zijn willen beperken, dan moeten we de CO2 uitstoot in een zo vroeg mogelijk stadium reduceren. Hoe langer we emissiereductie uitstellen, hoe sterker die emissiereductie dient te zijn om hetzelfde mitigerende effect op lange termijn opwarming van de aarde te hebben.

Daarom is ‘klimaattraagheid’ zo belangrijk.

zickfeld-2013

Gemodelleerde invloed van vier verschillende CO2 emissiescenario’s (panel a) op de CO2 concentratie in de atmosfeer (panel b) en op de oppervlakte temperatuur van de lucht in vergelijking met het jaar 2000 (paneel c). De CO2-concentratie blijft nog zeer lang verhoogd nadat de CO2-uitstoot is gereduceerd, omdat de lange-termijn ‘sinks’ voor CO2 zeer traag opereren (zie bv IPCC FAQ 6.2 voor een uitleg van deze ‘sinks’, zoals bijvoorbeeld reactie met gesteente). Omdat CO2 het infrarood warmteverlies van de aarde belemmert, zal het nog duizenden jaren warmer blijven dan het was voordat de CO2-concentratie steeg. De temperatuur loopt achter op de CO2-concentratie vanwege de tijd die het kost voor de oceanen om op te warmen. Figuur van Zickfeld et al (2013). 

Zoals ik al eerder schreef: Uitstel van mitigatie maatregelen totdat het water ons aan de lippen staat gaat gepaard met een groot risico, omdat veel veranderingen in het klimaat niet of nauwelijks omkeerbaar zijn op een menselijke tijdschaal. Tegen de tijd dat het probleem merkbaar wordt is het slechts het begin, als gevolg van de traagheid in de verschillende systemen (energiesysteem, koolstofcyclus en klimaatsysteem). Het lastige is dus dat degenen die het probleem veroorzaakt hebben in de beste positie zijn om het op te lossen, maar omdat de meest verregaande gevolgen zich pas veel later zullen voltrekken hebben zij de minste prikkel om er iets aan te doen.

Onlangs kwam de klimaattraagheid wat meer in het nieuws dankzij de journalisten Rolf Schuttenhelm and Stephan Okhuijsen (zie bijv ook De Correspondent, NRC, One World, Down to Earth, het kan Wel). Hun centrale punt was dat we in feite maar een gedeelte zien van de opwarming waaraan we het klimaatsysteem gecommitteerd hebben. De oceanen spelen hier in een belangrijke rol: net als een pan water niet meteen aan de kook slaat als we het fornuis aandoen, duurt het een tijdje voor de oceanen om op te warmen. En omdat er heel veel water in de oceanen zit (de gemiddelde diepte is ongeveer 4 km), duurt dat heel erg lang. Daarnaast zal de afkoelende werking van aerosolen (ook wel fijn stof genoemd, wat zonlicht reflecteert) langzaam afnemen is de verwachting, vanwege maatregelen om luchtverontreiniging tegen te gaan. De catch-22 is dat daarmee de tot dan toe gemaskeerde opwarming tevoorschijn komt.

De immense traagheid van het klimaatsysteem en de implicaties daarvan voor verstandig mitigatiebeleid zijn een ontzettend belangrijk, maar vaak onderbelicht aspect van klimaatverandering.

Update: ClimateInteractive heeft een goede simulatie van hoe de traagheid in de praktijk uitwerkt. Door middel van de schuif onder de grafiek kun je verschillende emissiescenarios kiezen. In de grafieken er boven zie je dan het effect daarvan op respectievelijk de CO2 concentratie, de temperatuur, en de zeespiegel, en hoe de respons gedempt wordt. De zeespiegel reageert zo mogelijk nog trager dan de temperatuur op een verandering in de CO2 concentratie, die op haar beurt weer als een slak reageert op een verandering in emissies.

Een Engelstalige versie van deze blog is te vinden op OurChangingClimate.

Forse reductie van de CO2-uitstoot nodig voor het welzijn van onze oceanen

De oceanen bevatten een haast onvoorstelbare hoeveelheid water en heel veel leven. Lange tijd leek het alsof niets daar substantieel verandering in kon brengen, maar inmiddels weten wij beter. De mens is er wel degelijk in geslaagd om die enorme en traag reagerende massa water te veranderen. Vervuiling, overbevissing en oceaanverzuring door de opname van een gedeelte van onze CO2-uitstoot, beginnen hun tol te eisen. Vooral de oceaanverzuring gaat met een snelheid die ongekend hoog is en die waarschijnlijk niet eerder is voorgekomen in de afgelopen 300 miljoen jaar. Onze CO2-uitstoot stopt niet van vandaag op morgen en daarmee zal de accumulatie van CO2 in de atmosfeer nog een tijd doorgaan. Dat geldt dan ook voor de opwarming en oceaanverzuring; dit heeft consequenties voor het leven in de oceanen, de toekomstige CO2-opname, het zeeniveau en de temperatuur van het water in de oceanen.

In een nieuw artikel (Gattuso et al. verschenen in Science) geven 22 wetenschappers van verschillende instituten een overzicht van de huidige stand van zaken met betrekking tot de oceanen gebaseerd op de meest recente wetenschappelijke literatuur. Daarnaast vergelijken zij de effecten van CO2-uitstoot op de oceanen volgens enkele verschillende toekomstscenario’s (RCP scenario’s). In de figuur boven het blogstuk geeft men een overzicht van de risico’s voor o.a. het zeeleven, de mogelijke managementopties en de veranderingen in enkele kengetallen voor het jaar 2100 voor de scenario’s RCP2.6 en RCP8.5.
Lees verder

FAQ Oceaanverzuring

Oceaanverzuring wordt door sommigen ‘het andere CO2 probleem’ genoemd en soms zelfs de ‘kwaadaardige tweeling van de opwarming van de aarde’. De Engelse term ocean acidification wordt ook vaak gebruikt. Met enige regelmaat wordt men in discussies geconfronteerd met allerlei misvattingen of vragen omtrent de oceaanverzuring. Hieronder pogen we voor de meest voorkomende vragen een aantal antwoorden en uitleg te geven. Deze zijn voor het grootste gedeelte gebaseerd op het “FAQs about Ocean Acidification” rapport uit 2012 en het rapport uit 2013 van het derde symposium over “The Ocean in a High-CO2 World”. Meer info en veel wetenschappelijke referenties zijn in die rapporten te vinden en op hun websites, zie de ‘Wetenschappelijke referenties en links’ onderaan het blogstuk.

1. Wat is oceaanverzuring?
2. Is oceaanverzuring hetzelfde als klimaatverandering?
3. Waarom noemt men het oceaanverzuring terwijl de oceanen basisch zijn?
4. Welke chemische reacties spelen een rol in de oceanen als het over CO2 gaat?
5. Waarom wordt er door de CO2 opname niet spontaan calciumcarbonaat gevormd?
6. Zijn er metingen die aantonen dat de pH daalt?
7. Hoeveel is de pH (zuurgraad) gedaald sinds de industriële revolutie?
8. Waarom is men bezorgd over de oceaanverzuring?
9. De natuurlijke variatie in de pH van de oceanen is groter dan de verwachte daling van de pH in de komende eeuw, waarom is dat laatste dan toch een punt van zorg?
10. Blijven de oceanen zoveel menselijk CO2 opnemen zoals nu het geval is?
11. Wat is de verwachting voor de toekomst voor de chemische samenstelling van de oceanen?
12. Hoe zullen de verschillende soorten reageren op de oceaanverzuring?
13. In het geologische verleden was de CO2 concentratie in de atmosfeer soms erg hoog en toch waren er koraalriffen en ander leven met een kalkskelet in de oceanen. Hoe kan dat?

Wetenschappelijke referenties en links.

1. Wat is oceaanverzuring?

Oceaanverzuring is een daling van de zuurgraad van de oceanen over decennia of langer. De oorzaak daarvan is meestal een opname van CO2 uit de atmosfeer; CO2 vormt in combinatie met water namelijk koolzuur (H2CO3). In het geologische verleden van de aarde is oceaanverzuring vaker voorgekomen en door natuurlijke oorzaken. Dit keer zijn wij mensen er de veroorzakers van, want in de huidige tijd neemt de hoeveelheid CO2 in de atmosfeer sterk toe door de verbranding van fossiele brandstoffen.

De zuurgraad wordt in de chemie aangeduid met de pH en dat is een logaritmische schaal (pH = – Log[H+]): een vloeistof met een pH van 5 is dus tien keer zo zuur als die met een pH van 6. Een pH van 7 noemt men neutraal, een hogere pH noemt men basisch en een lagere pH zuur. De pH van de oceanen varieert van circa 7.8 tot 8.4 (IPCC AR5, blz. 293) en is gemiddeld 8.1, de oceanen zijn derhalve licht basisch.

Lees verder

Verwarring over de opwarming van de oceanen

Door Bob Brand en Jos Hagelaars

Door menselijke activiteiten is de aarde aan het opwarmen en circa 93% van die warmte wordt door de oceanen opgenomen. De verandering in de warmte-inhoud van de oceanen is derhalve een heel belangrijke graadmeter voor de klimaatverandering. Het is voor de klimaatwetenschap dan ook een belangrijk onderwerp van onderzoek.

Recent zijn er twee artikelen uitgekomen over de opwarming van de oceanen in het tijdschrift Nature: Durack et al over het onderschatten van de opwarming van 1970 t/m 2004 tot 700 meter diepte (vooral op het zuidelijk halfrond) en Llovel et al over de opwarming van de gehele oceaan van 2005 t/m 2013. Volgens sommige commentatoren lijken deze onderzoeken elkaar tegen spreken en er is wat verwarring over de verschillende oceaandiepten.

Durack: onderschatten van de opwarming

Durack e.a. hebben de diverse datasets betreffende de warmte-inhoud (OHC = ocean heat content) van de oceanen vergeleken met de theoretische verwachting volgens modellen en met de zeespiegelstijging zoals gemeten met satellieten. Daar een deel van de zeespiegelstijging wordt veroorzaakt door de thermische uitzetting van het oceaanwater, is er een grote correlatie tussen de zeespiegelstijging en de warmte-inhoud. Op grond van deze analyses concluderen Durack e.a. dat de warmte-opname van het zuidelijk halfrond voor de periode 1970 t/m 2004 te laag is ingeschat. Zij wijten dit aan de beperkte dekkingsgraad van de diverse warmte-inhoud meetinstrumenten op het zuidelijk halfrond over die periode. Vanaf circa 2004 is deze dekkingsgraad verbeterd door het inzetten van de Argo sondes.

Durack en zijn mede-auteurs hebben doorgerekend wat deze onderschatting van de opwarming betekent voor de diverse warmte-inhoud datasets, zie figuur 1. Voor de mondiale NOAA data (Levitus 2012, de donkerblauwe balk) zou de onderschatting mondiaal gemiddeld oplopen tot maar liefst 58%.

Figuur 1: De waargenomen en gesimuleerde verandering van de warmte-inhoud voor 1970-2004. Figuur 5 uit Durack et al.

Lees verder

Tegenpolen: waarom de Noordpool zo snel opwarmt en de Zuidpool zo traag

aa

Temperatuurtrends over 1979 – 2005 volgens NASA GISTEMP. Bron: Marshall et al 2014

Het is een bekend fenomeen voor iedereen die het klimaatnieuws volgt: terwijl het oppervlak van het zeeijs in het Noordpoolgebied (tussen alle jaren van “herstel” door, die de zelfverklaarde sceptici zien) in ras tempo afneemt, groeit het juist rond Antarctica. Dit jaar werd voor de derde keer op rij een nieuw maximum-record bereikt. Zelfs die regelmaat lijkt in contrast te staan met de grote schommelingen aan de Noordpool, maar waarschijnlijk is dat toeval. Hoe dan ook, de tegenstelling in de ontwikkeling van het zeeijs is één van de vele voorbeelden die laten zien hoe verschillend de Noord- en Zuidpool op de opwarming van het klimaatsysteem reageren. Een voorbeeld dat overigens vrij makkelijk in perspectief is te plaatsen; dat deed blogger David Appell bijvoorbeeld enkele maanden geleden aan de hand van recente metingen en onderzoeksresultaten.

aa

Trends in zee- en landijs. Bron: Quark Soup – David Appell

Onlangs gepubliceerde meetgegevens van ESA’s Cryosat-2 laten nog eens zien dat de ijsmassa op Antarctica afneemt, en dat die afname zelfs versnelt. GOCE, een andere ESA-satelliet, ziet die afname ook, door kleine verschuivingen in de zwaartekracht. Op de Noordpool is de massa-afname veel kleiner – alleen op Groenland is het waarneembaar – simpelweg omdat er veel minder landijs is.

Daarmee zijn we meteen bij het grote verschil tussen de twee polen aangekomen: de Noordpool is oceaan, voor een deel omgeven door land en Antarctica is een continent, helemaal omgeven door de oceaan. Uiteindelijk zijn vrijwel alle verschillen tussen de twee polen hier direct of indirect op terug te voeren.

Lees verder

Zogenaamde ‘pauze’ opwarming aardoppervlak bedrieglijk

Vorige week stond er een interview met mij op Energiepodium over de ontwikkeling van de oppervlakte temperatuur en welke factoren daar een rol bij spelen. Het stuk is geschreven door Tseard Zoethout en is hieronder met toestemming overgenomen. Ik heb een aantal extra hyperlinks toegevoegd.

Sinds 1998 zijn temperaturen aan het oppervlak minder gestegen dan tussen 1970 en 1998. Volgens Bart Verheggen, Lector Aardwetenschappen aan het Amsterdam University College en een fervent blogger, is er echter geen trendbreuk en zal dit proces zich na verloop van tijd weer omkeren. Klimaatwetenschappelijk onderzoek richt zich op de rol van het arctisch gebied en de diepzee in het vinden van een verklaring.

“Wie de puzzelstukjes naast elkaar legt, ziet weinig tegenstelling tussen de laatste vijftien jaar en de kwart eeuw daarvoor: de opwarming van de aarde gaat gewoon door”, zegt Verheggen.

Lees verder

De knoppen van het klimaat en de schakelende oceaan

Gastblog van Hans Custers

Na enkele pittige discussies met Bert Amesz kreeg ik onlangs de kans om zijn boek te bekijken. Die kans kon ik niet laten liggen. Het eerste deel van deze blogpost is een bespreking van het boek; het tweede deel gaat wat verder in op de visie van Bert Amesz op de klimaatwetenschap.

Het boek: Aan de knoppen van het klimaat

Laat ik met het positieve beginnen: er is bijzonder veel aandacht besteed aan de vormgeving en aan fraaie illustraties. En Amesz is bereid om zonder morren bepaalde elementaire wetenschappelijke inzichten, zoals het broeikaseffect, te accepteren.

Het boek wordt gepresenteerd als een populair-wetenschappelijke uitgave over alles wat met klimaatwetenschap en klimaatverandering te maken heeft. Maar meer dan dat is het een boek met een boodschap. Die boodschap klinkt van de eerste tot en met de laatste pagina luid en duidelijk door: het valt reuze mee met die klimaatverandering en al helemaal met de menselijke invloed; voor zover we er al iets over kunnen zeggen, want er is nog zo veel onbekend en onzeker en de wetenschap is tot op het bot verdeeld. Het feit dat verschillende wetenschappelijke instituten in de wereld onafhankelijk van elkaar – en dus niet volledig identiek – gegevensreeksen over de wereldtemperatuur bijhouden wordt opgevoerd als bewijs van tweespalt en zelfs ruzie in de wetenschappelijke wereld. Dat een overgrote meerderheid van de wetenschappers spreekt van consensus, dat die overgrote meerderheid het met elkaar eens is dat een aanzienlijke menselijke invloed zeer waarschijnlijk is, meldt het boek dan weer niet. Amesz schetst liever het beeld van “onderzoekers van het IPCC” die de opdracht zouden hebben om zich op de menselijke invloed te concentreren. In werkelijkheid heeft het IPCC geen onderzoekers in dienst, verstrekt het ook geen onderzoeksopdrachten en geeft het op geen enkele manier sturing aan het klimaatonderzoek dat aan tal van gerenommeerde wetenschappelijke instituten over de hele wereld wordt uitgevoerd.

Amesz meent dat hij net zo veel gewicht toe moet kennen aan verhalen van clubs als het NIPCC – enkel en alleen opgericht om twijfel te zaaien over de wetenschap – als aan de door tienduizenden wetenschappers ondersteunde IPCC-rapporten. Dat het IPCC in de wetenschap een middenpositie inneemt en dat de geschiedenis laat zien dat de wetenschap juist geneigd is tot terughoudendheid wil hij al helemaal niet weten. Deze “framing” van de discussie zien we vaker: de breed geaccepteerde wetenschap wordt als een “alarmistisch” uiterste in het spectrum aan opvattingen afgeschilderd en tegenover het andere uiterste – de ontkenning van de elementaire wetenschap van het broeikaseffect – geplaatst, alsof de redelijkheid hier in het midden zou liggen.

Alarmisten-Sceptici

De positie van sceptici, alarmisten en de wetenschap

Lees verder