Categorie archief: aerosols

De invloed van bewolking op de warmte van 2023

Er was vorige week aardig wat aandacht voor een artikel over de rol die een afname van lage bewolking speelde bij de recordhoge gemiddelde wereldtemperatuur van 2023. Het onderzoek is uitgevoerd aan het Duitse Alfred Wegener Instituut, en de hoofdauteur is Helge Goessling. Het is zonder meer een interessant onderzoek. Maar een volledige verklaring voor de uitzonderlijke warmte is het niet. Daarvoor is het allemaal toch wat te ingewikkeld. Het zal onze lezers niet verbazen dat niet iedereen zich daar wat van aantrok. Pseudosceptici claimden weer eens hun grote gelijk, gemakshalve voorbijgaand aan het feit dat bewolking niet zomaar afneemt. Het onderzoek bewijst ook niet dat alles te maken heeft met een afname van aerosolen, door regels voor het zwavelgehalte in scheepsbrandstoffen, zoals de aanhangers van die theorie beweerden. De onderzoekers constateren juist dat er nog veel onzeker is over de onderliggende oorzaken van de afname van de bewolking.

Parallellen met ‘de pauze’

Pieken en dalen in de gemiddelde wereldtemperatuur (of in allerlei andere klimatologische variabelen) zijn meestal het gevolg van een samenloop van omstandigheden. Een decennium geleden hadden we het tegenovergestelde van de huidige situatie: een periode van enkele jaren met een temperatuur die achterbleef bij de langetermijntrend en dus ook bij de projecties van een doorgaande, gestage opwarming. Pseudosceptici hadden het over een pauze in de opwarming. En terwijl op sociale media vooral een welles-nietes discussie werd gevoerd over die ‘pauze’, zochten klimaatwetenschappers naar nieuwe kennis die de afwijking van de trend op zou kunnen leveren. Die kennis kwam er ook wel, maar dan vooral in kleine brokjes. En zeker niet in de vorm van één grote, overkoepelende verklaring. De El Niño die begon in 2015 maakte in 2016 definitief een eind aan de ‘pauze’. En als je nu naar een grafiek van het verloop van de gemiddelde temperatuur in de afgelopen anderhalve eeuw kijkt, dan is er helemaal geen uitzonderlijke pauze meer te zien. Of het met de huidige temperatuurpiek ook zo afloopt, staat natuurlijk niet vast. Maar het is wel een reële mogelijkheid.

Modelprojecties en waarnemingen (tot en met oktober 2024) volgens Berkeley Earth van de verandering van de gemiddelde wereldtemperatuur. Bron: Zeke Hausfather, The Climate Brink.

Het vorige week gepubliceerde onderzoek concentreert zich op waarnemingen. Het kijkt dus naar wat er is gebeurd, maar niet naar de onderliggende mechanismes. Het is een belangrijke eerste stap in de wetenschappelijke analyse van de hoge temperatuur die al zo’n anderhalf jaar aanhoudt, maar wel een die minstens zoveel vragen oproept als beantwoordt.  

Lees verder

Aerosolen van natuurbranden kunnen de opwarming van het noordpoolgebied versterken

De invloed van aerosolen op het klimaat is complex, en dus onderwerp van veel wetenschappelijk onderzoek. Aerosolen kunnen de albedo (het vermogen om zonlicht te weerkaatsen, ofwel de ‘witheid’) van de aarde op meerdere manieren beïnvloeden. Ze kunnen zonlicht absorberen, verstrooien en weerkaatsen. Bovendien kunnen ze fungeren als condensatiekernen, en daarmee de eigenschappen van wolken beïnvloeden.

Hoe het netto-effect van aerosolen op de temperatuur van het aardoppervlak uitvalt, hangt voor een groot deel af van vrij simpele eigenschappen van de deeltjes, zoals kleur, vorm en grootte. Die eigenschappen hangen weer af van de chemische samenstelling, van de manier waarop de deeltjes zijn ontstaan, en soms van de chemische en fysische interacties die ze aangaan met andere deeltjes of stoffen in de atmosfeer. Maar het soort gebied waar de deeltjes boven zweven kan ook veel uitmaken. Stel bijvoorbeeld dat een bepaald aerosol-deeltje precies 50% van het zonlicht dat erop valt reflecteert en de resterende 50% absorbeert. Zwevend boven een donker oppervlak, zoals het regenwoud of de oceaan, zouden zulke deeltjes de temperatuur omlaag brengen. Ze reflecteren immers meer zonlicht dan het bos of het zeewater, die 90% of nog meer absorberen. Maar dat valt anders uit boven vers gevallen sneeuw, die tot 90% reflecteert. De deeltjes absorberen dan meer van het invallende zonlicht dan het witte aardoppervlak. En ze kunnen ook nog een deel van het door de sneeuw gereflecteerde licht absorberen. In poolgebieden zouden ze het dus juist warmer kunnen maken. In elk geval in de zomer, als de zon daar niet onder gaat.

Samengevat: of de aarde door een aerosol meer reflecterend (lichter) of meer absorberend (donkerder) wordt, hangt ook af van de albedo (de ‘witheid’) van het aardoppervlak. Ook de hoogte waarop de deeltjes zweven kan ook nog uitmaken. Deeltjes die opstijgen tot boven bewolking, kunnen zonlicht absorberen dat anders deels door de bewolking zou zijn weerkaatst en bovendien een deel van het door de wolken gereflecteerde licht. Dat werkt door in de temperatuur aan het aardoppervlak, omdat de temperatuurgradiënt in de troposfeer vrij constant is (door het radiatief-convectieve evenwicht). Deeltjes die zich boven de hoogte bevinden waar de wolken ontstaan hebben natuurlijk ook geen invloed op de eigenschappen van die wolken. En ze kunnen langer blijven zweven, omdat ze niet uitregenen.

Natuurbranden in het hoge noorden

Nature Climate Change publiceerde onlangs een artikel over de invloed van aerosolen die ontstaan bij natuurbranden op de temperatuur in het noordpoolgebied. Het onderzoek concentreert zich op de uitstoot door branden in de meest noordelijke delen (boven de 55ste breedtegraad) van Noord-Amerika, Europa en Azië. Zowel het verbrande oppervlak als de intensiteit van branden is de afgelopen decennia toegenomen in deze gebieden. En daarmee ook de  uitstoot van aerosolen tijdens het zomerseizoen (juni, juli, augustus). De onderzoekers vinden voor de periode 2000 – 2020 een exponentieel (!) verband tussen de uitstoot en de temperatuur in die gebieden. Het is dus zeer aannemelijk dat de uitstoot in de toekomst verder toe zal nemen, door de verdere opwarming van het klimaat. Mogelijk zal dat niet meer volgens het exponentiële verband tussen temperatuur en uitstoot gebeuren: de beschikbaarheid van brandbaar materiaal kan op een zeker moment een begrenzing vormen.

Lees verder

Het klimaateffect van de uitbarsting van Hunga Tonga in 2022

Waarneming van de uitbarsting van Hunga Tonga – Hunga Ha’apai door de GOES-17 satelliet. Bron: NASA.

Op 15 januari 2022 barstte een grote, onderzeese vulkaan uit bij het archipel Tonga, de Hunga Tonga-Hunga Ha’apai (of korter: Hunga Tonga). De uitgestoten pluim reikte tot in de mesosfeer, op een hoogte van zo’n 55 kilometer boven het aardoppervlak. Op internet verschenen al snel wat speculatieve verhalen over een mogelijke invloed op het klimaat van die uitbarsting, maar de meeste deskundigen hielden zich wijselijk op de vlakte. Zij begrepen dat er in de recente geschiedenis geen vergelijkbare uitbarstingen zijn geweest, en dat er dus niet of nauwelijks informatie was waar ze voorspellingen op zouden kunnen baseren. Inmiddels zijn er aardig wat wetenschappelijke publicaties verschenen. Die lijken elkaar soms tegen te spreken, maar als je wat dieper graaft valt dat wel mee. De belangrijkste conclusie is steevast: het effect van de uitbarsting op de gemiddelde wereldtemperatuur was klein, maar op regionale schaal zijn grotere effecten mogelijk. De uitbarsting van Hunga Tonga heeft dus hoogstwaarschijnlijk geen bijdrage van betekenis geleverd aan de recordwarmte op wereldschaal van het afgelopen jaar.

Dat grote bovengrondse vulkaanuitbarstingen de aarde tijdelijk afkoelen, is al lang bekend. Dat komt vooral doordat er bij zo’n uitbarsting een flinke hoeveelheid zwaveldioxide in de stratosfeer kan belanden, dat daar kleine, zonlicht reflecterende aerosoldeeltjes vormt die daar enkele jaren kunnen blijven zweven. Klimaatmodellen konden het effect van zo’n uitbarsting, zoals de Pinatubo in 1991, in de jaren ’90 al behoorlijk adequaat simuleren, al was daarvoor natuurlijk wel een goede schatting nodig van de hoeveelheid zwaveldioxide die er was uitgestoten naar de stratosfeer.

Waterdamp

Een grote onderzeese uitbarsting brengt ook een grote hoeveelheid waterdamp in de stratosfeer. Dat maakt het een stuk ingewikkelder. Waterdamp is een broeikasgas en heeft dus juist een opwarmend effect. Al werkt dat in de stratosfeer net wat anders dan in de troposfeer. Broeikasgassen zenden in de stratosfeer meer warmtestraling uit dan ze absorberen. Zo koelen ze de stratosfeer juist af. Maar omdat een deel van die uitgezonden straling naar beneden gaat, warmt de troposfeer er (een beetje) door op. Verder kunnen er stratosferische wolken ontstaan. Dergelijk hoge wolken hebben ook een opwarmend effect. Om het nog wat ingewikkelder te maken, spelen aerosoldeeltjes ook een rol in de vorming van die wolken, als condensatiekernen.

Lees verder

Wordt de klimaatinvloed van aerosolen onderschat?

Verloop van menselijk en natuurlijke invloedsfactoren (forceringen) op de gemiddelde temperatuur van het aardoppervlak sinds 1750. Bron: IPCC AR6.

Met alle klimaatrecords die er in het afgelopen jaar werden verbroken, was er plotseling ook de nodige aandacht voor het afkoelende effect van aerosolen. Een afname van de uitstoot van aerosolen heeft mogelijk bijgedragen aan de hoge temperaturen. Wie niet zo thuis is in de klimaatwetenschap zou kunnen denken dat dat een helemaal nieuw inzicht was. Dat is zeker niet het geval. Je zou kunnen zeggen dat de gemiddelde nieuwsconsument die invloed van aerosolen mogelijk heeft onderschat. Maar voor wetenschappers geldt dat zeker niet.

Aerosolen werden in 1971 al besproken, toen een internationale groep van zo’n dertig wetenschappers bij elkaar kwam om een mogelijke toekomstige onbedoelde verandering van het klimaat door toedoen van de mens te bespreken. Sommige deelnemers verwachtten toen dat afkoeling door aerosolen de opwarming door een toenemende concentratie van broeikasgassen zou overvleugelen. Dat is anders gelopen, onder meer doordat de uitstoot van broeikasgassen sindsdien is blijven toenemen, terwijl er maatregelen zijn genomen om de uitstoot van aerosolen te beperken. Dat is natuurlijk de reden waarom aerosolen niet zo veel in het nieuws zijn en broeikasgassen vaker: de broeikasgassen zijn het grote probleem.

Lees verder

De echte versnelling van de opwarming

Verloop van de gemiddelde wereldtemperatuur sinds 1880 volgens NASA-GISS

Bij een opwarmend klimaat horen warmterecords. Dat spreekt voor zich. Maar omdat het klimaat ook zijn natuurlijke variaties kent, is niet elk jaar net weer iets warmer dan het vorige. Soms vallen de records bij bosjes, en soms blijven ze een tijdje uit. Zouden we daar teveel op afgaan, dan zouden we soms in paniek raken over zo’n recordperiode, om later weer te denken dat het best meevalt met de verandering van het klimaat. Aan de andere kant roepen uitschieters in de temperatuur altijd wel de vraag op of er misschien iets aan de hand was dat niet was voorzien. Zowel bij klimaatwetenschappers als bij geïnteresseerde volgers. De goede balans vinden tussen enerzijds alertheid op verrassingen en anderzijds zinloze speculaties, blijkt nog niet zo makkelijk te zijn.

Vermoedens en speculaties

Afgelopen maand werd het zoveelste klimaatrecord van dit jaar gebroken: de warmste oktober sinds het begin van de metingen. En die recordreeks zou nog wel enkele maanden door kunnen gaan, vanwege de El Niño die zich heeft ontwikkeld in de Stille Oceaan. De temperatuurpiek van een El Niño ligt meestal ergens in de periode december tot maart. Maar het is nog niet zo’n overtuigende Niño. De oceaan vertoont weliswaar duidelijk het bijbehorende patroon, maar de respons van de atmosfeer is tot nu toe vrij zwak. De index waarin atmosferische variabelen zijn opgenomen is zelfs weer onder de drempel voor een El Niño gezakt. De komende maanden zullen leren hoe het verder gaat. De ene Niño is nou eenmaal de andere niet: ze hebben allemaal hun eigen verloop. Er zijn in het verleden Niño’s geweest die behoorlijk afweken van het gemiddelde patroon.

Lees verder

Nog 6 jaar uitstoten en 1,5°C wordt (waarschijnlijk) bereikt

Een nieuwe studie in Nature bekijkt de hoeveelheid koolstof die we nog kunnen uitstoten als we een kans willen hebben om de opwarming van de aarde tot 1,5°C te beperken. Met huidige, mondiale, emissies hebben we nog zo’n 6 jaar totdat die hoeveelheid koolstof op is. In dat geval wordt het wel erg waarschijnlijk dat de opwarming de 1,5°C aantikt. Maar hoe sneller we emissies reduceren, hoe langer we onszelf nog geven om de doelen uit het Parijsakkoord te halen.

Nieuwe schattingen, geen meevallers

Het onderzoek, gepubliceerd in Nature Climate Change, maakt een schatting van het resterende koolstofbudget, de netto hoeveel CO2 die de mens nog kan (of mag) uitstoten zonder een bepaalde grens aan opwarming te passeren. In het Parijsakkoord heeft de wereldpolitiek afgesproken om de opwarming van de aarde “ruim onder 2°C” te houden en “zich in te spannen om de temperatuurstijging te beperken tot 1,5°C” boven het pre-industriële niveau. Als we ons aan deze doelen committeren, hoeveel CO2 kunnen we dan nog uitstoten?

Figuur uit Forster et al. waarin de opwarming van de aarde en het koolstofbudget voor 1,5°C zijn geüpdate met nieuwe waardes, een jaar na het verschijnen van IPCC AR6 WGI.
Lees verder

Svensmark – een nieuw artikel, het oude liedje

Verloop van de temperatuur (gemiddelde van GISTEMP, NOAA en HadCRUT4) en kosmische straling (data van de Moscow Neutron Monitor) sinds 1958. Kosmische straling is voor de duidelijkheid weergegeven op een inverse schaal: volgens de Svensmark-hypothese zou minder straling tot een hogere temperatuur leiden. De grafiek is van Jos Hagelaars.

Het komt nog wel eens voor dat het wetenschappelijk of maatschappelijk belang van een wetenschappelijke publicatie wat wordt aangedikt in een persbericht of interview. Die overdrijving zal nogal eens afkomstig zijn van een pr-afdeling, maar soms zullen wetenschappers ook zelf menen dat ze hun onderzoek zo moeten verkopen. Of ze overschatten het belang van hun onderzoek echt. Een wetenschapper is tenslotte ook maar een mens. Maar er zijn maar weinig wetenschappers die zo ver gaan in hun overdrijving dan Henrik Svensmark.

Svensmark meent dat kosmische straling een invloed kan hebben op bewolking en daarmee op het klimaat op aarde. Op zich een interessante gedachte, die best zou kunnen kloppen. Alleen is kosmische straling dan één van de vele factoren die meespelen in het complexe mechanisme waarmee aerosolen effect kunnen hebben op wolken. En er zijn nog geen aanwijzingen dat kosmische straling daar een dominante factor is. Laat staan dat die straling een grote rol speelt bij klimaatschommelingen. Dat kosmische straling heeft bijgedragen aan de opwarming van het klimaat sinds midden vorige eeuw is al helemaal onaannemelijk. De afbeelding hierboven illustreert dat: volgens de Svensmark-hypothese had het juist wat af moeten koelen. Lees verder

De beïnvloeding van het klimaat door de interactie tussen aerosolen en wolken lijkt eenvoudiger dan gedacht

Eruptie van de Holuhraun in IJsland in het najaar van 2014 (Bron: Flickr/Sparkle Motion)

De invloed van aerosolen (microscopisch kleine deeltjes of druppeltjes in de atmosfeer) op het klimaat is complex. Aerosolen kunnen een afkoelend effect hebben op het oppervlak, omdat ze zonlicht reflecteren, maar ook een opwarmend effect op de atmosfeer als de deeltjes zonlicht absorberen. Het netto-effect hangt af van tijd, plaats, hoogte en de precieze eigenschappen van de aerosol-deeltjes. En alsof dat al niet genoeg is, spelen aerosolen ook nog eens een belangrijke rol bij het ontstaan van bewolking. Met alle mogelijke klimaateffecten van dien. De invloed van aerosolen op bewolking wordt wel het indirect aerosol-effect genoemd.

Het zit zo. Als lucht afkoelt en daardoor oververzadigd raakt met waterdamp, condenseert die waterdamp op de aanwezige aerosoldeeltjes. Zonder de “hulp” van die zogenaamde condensatiekernen zou de luchtvochtigheid op kunnen lopen tot wel vier maal het verzadigingspunt, voordat de condensatie van waterdamp op gang komt. Met als gevolg, zo stel ik me in elk geval voor, dat er ineens een enorme plens water uit een totaal onbewolkte lucht zou vallen als die condensatie eenmaal op gang zou komen.

Dat zal in werkelijkheid nooit gebeuren, omdat de aardse atmosfeer nooit helemaal stofvrij is. Er zit vulkanische as in de lucht, woestijnstof, zeezout en roet dat ontstaat bij natuurbranden. En wij mensen voegen daar nog van alles aan toe. Misschien nog belangrijker is dat er door chemische processen in de atmosfeer ook aerosolen ontstaan. Daarbij spelen diverse organische stoffen en zwaveldioxide een grote rol. Die stoffen belanden door zowel natuurlijke processen als menselijke activiteiten in de atmosfeer. Vulkanen zijn een belangrijke natuurlijke bron van zwaveldioxide. Menselijke emissies zijn vooral het gevolg van het gebruik van fossiele brandstoffen. De concentratie zwaveldioxide is van grote invloed op de vorming van aerosolen.

Omdat er vrijwel altijd al voldoende aerosolen aanwezig zijn, zorgen extra deeltjes er niet of nauwelijks voor dat bewolking eerder of gemakkelijker ontstaat. De hoeveelheid water die condenseert neemt meestal ook niet toe als er meer deeltjes zijn; als de waterdampconcentratie beneden het verzadigingspunt komt condenseert er niets meer. Maar als er meer deeltjes zijn die als condensatiekern kunnen fungeren ontstaan er wel meer druppeltjes (of ijskristalletjes), die dan ook kleiner zijn. En dat heeft invloed op de eigenschappen van een wolk, op twee verschillende manieren: Lees verder

Zin en onzin over de rol van stofdeeltjes bij het ontstaan van wolken

Er zijn de laatste tijd zo hier en daar weer verhalen verschenen over de rol van aerosolen bij het ontstaan van wolken, waarin niet zelden feit en fictie door elkaar worden gehaald. Dit naar aanleiding van drie nieuwe artikelen (zie voor meer informatie over deze onderzoeken het nieuwsbericht van Nature) die diep ingaan op het ontstaan van die aerosolen. Omdat hier zoveel misverstanden over bestaan, kan het geen kwaad om eens wat zaken op een rijtje te zetten.

Om bij het begin te beginnen: de eerste factor die bepaalt of er wel of geen wolken ontstaan op een bepaalde plek is de luchtvochtigheid. Als lucht niet verzadigd is met waterdamp, ofwel bij een relatieve vochtigheid beneden de 100%, kunnen er geen wolken ontstaan. Als lucht wel verzadigd is kan dat wel, maar er is nog iets nodig.

De complicatie zit ‘m in het fenomeen faseovergang. De overgang van een stof tussen vaste, vloeibare en gasfase heeft vaak een duwtje in de rug nodig om op gang te komen. Dat is bijvoorbeeld te zien in een glas bier of frisdrank: de koolzuurbelletjes ontstaan alleen op bepaalde plekken, waar ze zich kunnen ontwikkelen bij microscopisch kleine oneffenheden in het glas. Kookvertraging in een magnetron is ook een bekend fenomeen: water kan opgewarmd worden tot boven het kookpunt, maar pas overgaan in de gasfase door de schok als het glas uit de oven wordt gepakt. Voor de condensatie van waterdamp tot druppeltjes of ijskristallen in de lucht geldt iets vergelijkbaars: helemaal zuivere lucht kan oververzadigd raken met waterdamp zonder dat er direct wolken ontstaan. Kleine stofdeeltjes in de lucht (aerosolen) kunnen hier het duwtje in de rug geven: watermoleculen condenseren op die deeltjes, die vervolgens uitgroeien tot druppeltjes of ijskristallen. Dergelijke stofdeeltjes worden wel condensatiekernen genoemd. Op Youtube wordt dit effect zichtbaar gemaakt met een eenvoudig experimentje (met excuses voor de muziek).

In een volledig stofvrije aardatmosfeer zouden minder wolken voorkomen dan in een atmosfeer die wat stoffiger is. Zonder de aanwezigheid van stofdeeltjes condenseert water niet zo snel: de relatieve vochtigheid kan dan oplopen tot 400%. (Een gevolg van het zogenaamde Kelvin effect.) In de aardatmosfeer zijn altijd wel wat stofdeeltjes aanwezig en zal een dergelijke oververzadiging daarom nooit voorkomen; de oververzadiging blijft beperkt tot enkele procenten. Omdat er altijd wel condensatiekernen aanwezig zijn is in de praktijk de luchtvochtigheid de bepalende factor voor het al of niet ontstaan van wolken. De mate van oververzadiging bepaalt hoeveel wolken er ontstaan, of beter: hoeveel waterdamp er condenseert.

De hoeveelheid condensatiekernen heeft vooral invloed op de eigenschappen van de bewolking. Het ligt voor dat hand dat er, in elk geval in eerste instantie, meer en kleinere druppeltjes zullen ontstaan naarmate het aantal condensatiekernen toeneemt. Elke condensatiekern vormt immers het begin van een druppeltje, als er meer condensatiekernen zijn wordt de hoeveelheid waterdamp die condenseert over meer druppeltjes verdeeld. Wolken worden dan witter: ze reflecteren meer zonlicht en hebben dus een afkoelend effect op het klimaat. Bovendien regenen de kleinere druppeltjes minder snel uit, waardoor deze wolken een langere levensduur hebben. Lees verder

Enquête bevestigt wetenschappelijke consensus over door de mens veroorzaakte opwarming

  • Een enquête onder meer dan 1800 klimaatwetenschappers bevestigt dat er brede overeenstemming is dat de opwarming van de aarde hoofdzakelijk wordt veroorzaakt door antropogene broeikasgassen.
  • Deze consensus wordt sterker met toegenomen expertise, zoals gedefinieerd door het aantal zelf-gerapporteerde artikelen in de ‘peer-reviewed’ literatuur.
  • De belangrijkste conclusie in IPCC AR4 over attributie kan leiden tot een onderschatting van de broeikasgasbijdrage aan de opwarming van de aarde, omdat hierin impliciet het minder bekende maskerende effect van koelende aërosolen is meegenomen.
  • Degenen die sceptisch zijn over een belangrijke menselijke invloed op het klimaat geven aan dat ze vaker in de media komen dan andere wetenschappers.

In 2012, toen ik gedetacheerd was bij het PBL (Planbureau voor de Leefomgeving), heb ik samen met collega’s een gedetailleerde enquête uitgevoerd over klimaatwetenschap. Meer dan 1800 internationale wetenschappers op het brede gebied van klimaatverandering, inclusief bijvoorbeeld klimatologie, klimaateffecten en mitigatie, hebben de vragenlijst ingevuld. De belangrijkste resultaten van de enquête zijn nu verschenen in het vakblad Environmental Science and Technology (doi: 10.1021/es501998e).

Consensus over de menselijke oorzaak van klimaatverandering

Bij toenemende deskundigheid of ervaring in klimaatwetenschap blijkt de mate van overeenstemming over de bijdrage van broeikasgassen aan de opwarming ook toe te nemen. Zo is 90% van de respondenten met meer dan tien klimaat-gerelateerde ‘peer-reviewed’ publicaties (ongeveer de helft van alle respondenten) het erover eens dat door de mens veroorzaakte broeikasgassen de belangrijkste oorzaak zijn van de recente opwarming. Dit is gebaseerd op twee vragen, waarvan er één een directe weerspiegeling was van de belangrijkste conclusie over attributie in IPCC AR4, namelijk dat meer dan de helft van de recente opwarming zeer waarschijnlijk is veroorzaakt door antropogene broeikasgassen.

Verheggen et al - Figure 1 - GHG contribution to global warming

Figuur 1. Hoe meer peer-reviewed publicaties over klimaatverandering de respondenten aangeven te hebben geschreven, hoe belangrijker ze denken dat de bijdrage van broeikasgassen (BKG) is aan de opwarming. Het aantal antwoorden is weergegeven als een percentage van het aantal respondenten (N) in elke deelgroep, gegroepeerd naar het door henzelf aangegeven aantal publicaties.

Analyses van de vakliteratuur (bijv. Cook et al., 2013; Oreskes et al., 2004) vinden over het algemeen een nog sterkere consensus dan opiniepeilingen zoals deze enquête. Dit komt omdat er een sterkere consensus is onder de meest publicerende – en wellicht dus ook de meest deskundige- klimaatwetenschappers. De kracht van een literatuuranalyse ligt in het feit dat daarmee het primaire forum van de wetenschappelijke bewijsvoering en argumentatie wordt onderzocht. De kracht van een enquête zoals deze is dat daarmee heel specifiek kan worden onderzocht waar nu precies overeenstemming over is en waar de wetenschappers het over oneens zijn. Deze twee methodes om de wetenschappelijke consensus te bepalen zijn in die zin complementair. Onze vragenlijst was heel specifiek en onze definitie van de consensus positie was daarmee wellicht strikter dan zoals in sommige andere studies is gehanteerd. Sceptische meningen zijn waarschijnlijk oververtegenwoordigd in onze enquête in vergelijking met andere.

Hoe je het ook wendt of keert, wetenschappers zijn het er in groten getale over eens dat de opwarming van de aarde voor het grootste deel door menselijk handelen is veroorzaakt.

Lees verder