Tagarchief: zeespiegelstijging

Is anderhalve graad teveel voor de ijskappen van Groenland en Antarctica?

Laat ik beginnen met een waarschuwing. Wie een absoluut zeker ‘ja’ of ‘nee’ verwacht als antwoord op de vraag hierboven, moet ik teleurstellen. Absolute zekerheid kan de wetenschap hierover niet geven. Los van het feit dat er geen harde, volledig objectieve criteria bestaan voor wat we onder ‘teveel’ moeten verstaan. Maar vooral leven we inmiddels in een klimaat dat onbekend terrein is voor ons. Wat er in dat onbekende terrein met ijskappen gebeurt hangt af van een ingewikkeld samenspel van onder meer smelt aan het oppervlak, veranderingen in patronen van sneeuwval en regen, stroomsnelheid van gletsjers, inwerking van warmer zeewater aan de basis, enzovoort. Het inzicht in al die processen is het afgelopen decennium wel toegenomen. Inmiddels beseffen ijsonderzoekers dat de gevolgen van een vrij beperkte opwarming, zeg een of twee graden, voor de ijskappen veel groter zijn dan lang werd gedacht. Met natuurlijk nog wel het een en ander aan onzekerheden. Waarbij de mogelijke tegenvallers veel groter en ingrijpender zijn dan de mogelijke meevallers.

Om een idee te krijgen van wat er zou kunnen gebeuren moeten wetenschappers afgaan op reconstructies van veranderingen in ijskappen in het verre verleden, op modellen en op waarnemingen van wat er nu gebeurt. Het is onredelijk om te verwachten dat die wetenschappers heel nauwkeurig, op een tijdschaal van een of twee decennia, kunnen voorspellen wat de gevolgen zullen zijn van enkele tienden van een graad meer of minder. In de ijskappen van Groenland van Antarctica zit genoeg ijs opgeslagen om de zeespiegel met 65 meter te laten stijgen. Een procentje meer of minder dat daarvan smelt, heeft al ingrijpende gevolgen voor kustgebieden overal ter wereld.

Dat experts zich in toenemende mate zorgen maken, blijkt bijvoorbeeld uit een artikel dat vorige week werd gepubliceerd in Nature Communications Earth & Environment. Het artikel bevat geen nieuw onderzoek, maar geeft een overzicht van de wetenschappelijke stand van zaken. Op basis daarvan concluderen de auteurs dat anderhalve graad geen veilige grens is voor de ijskappen. In een artikel in The Guardian lichten ze dat toe. Ze zien een zeespiegelstijging van 1 centimeter per jaar – een meter per eeuw, dus – als het maximum waaraan mensen in laaggelegen kustgebieden zich aan kunnen passen. En dan vooral in arme delen van de wereld. Een land als Nederland redt zich waarschijnlijk nog wel een tijd als het meer wordt. Chris Stokes, eerste auteur van het artikel, licht in de video hieronder toe waarom hij anderhalve graad geen veilige doelstelling vindt.

Lees verder

Nieuwe informatie over klimaatverandering uit de vriezer

Foto van luchtmachtbasis op Thule
Bron: Archief van de Amerikaanse Luchtmacht

Gastblog van Nynke Keulen, Geological Survey of Denmark and Greenland, coauteur van het geciteerde artikel

Tijdens een interglaciaal, een periode tussen twee ijstijden, ruim 400.000 jaar geleden was een groot deel van Groenland ijsvrij, bedekt met toendra en lokaal ook bebost. Dat zo’n groot deel van Groenland zo kortgeleden ijsvrij was, is een nieuwe bevinding die wordt beschreven in een recent artikel in het tijdschrift Science. Het bewijst dat de Groenlandse ijskap kwetsbaar is en sneller en verder kan afsmelten dan eerder aangenomen.

Tijdens de koude oorlog wilde het Amerikaanse leger ondergrondse bases aanleggen in Noord Groenland, waarbij ondergronds in dit geval betekende: in de Groenlandse ijskap. Daarom werden er in de jaren ’60 van de vorige eeuw verschillende boringen in het ijs uitgevoerd. Een van deze boringen drong door tot in het bevroren sediment onder het ijs op een locatie die Camp Century genoemd wordt. De ijskernen kwamen terecht in een vriezer van het archief van het Niels Bohr Instituut in Kopenhagen en raakten vergeten, tot ze tijdens het opruimen van het archief in 2017 werden herontdekt. Gelukkig waren de kernen niet ontdooid en niet blootgesteld aan licht en dat bleek uiterst relevant te zijn voor het onderzoek aan deze ijskernen.

Want het bevroren sediment bleek spectaculair te zijn: het bevatte organisch materiaal, delen van bladeren, zaden en mos. Dat alles wijst erop dat het gebied een toendra was, met een vegatatie die afwijkt van wat er nu in Scandinavië gevonden wordt. Omdat de ijskernen in het donker bewaard waren, konden ze gedateerd worden met methodes die luminescentie en kosmogene nucleïdes heten. Hierbij wordt het laatste tijdvak met blootstelling aan zonlicht gemeten. Hierdoor is er nu voor het eerst bewijs wanneer Groenland precies ijsvrij was, namelijk 416.000 jaar geleden, met een marge van 38.000 jaar. Als gevolg van deze ontdekking uit de vriezer, werd het sediment nu onderzocht met een grote hoeveelheid technieken uit verschillende takken van de geologie, geomorfologie en glaciologie door een groot aantal onderzoeksinstituten en universiteiten in Europa en Verenigde Staten, onder leiding van de Universiteit van Vermont. De eerste ontdekkingen zijn nu gepubliceerd.

Lees verder

Zeespiegelvariabiliteit in en rondom de Noordzee

Gastblog van Tim Hermans

Natuurlijke schommelingen in het jaarlijks gemiddelde zeeniveau in de Noordzee kunnen oplopen tot meer dan 10 centimeter, bijvoorbeeld in Den Helder. Die grote variaties van het ene op het andere jaar vormen een belangrijk deel van het lokaal gemeten zeespiegelsignaal in relatief korte observatie-reeksen zoals satellietmetingen (beschikbaar vanaf 1993). Bij het bepalen van de mondiaal gemiddelde zeespiegelstijging op basis van satellietmetingen (iets meer dan 3 mm/jaar in de periode 1993-2015; Oppenheimer et al., 2019), speelt inter-jaarlijkse variabiliteit een relatief kleine rol. Dit omdat de zeespiegelvariabiliteit in verschillende regio’s dan min of meer wordt uitgemiddeld. Echter, regionaal kan natuurlijke variabiliteit van het zeeniveau op korte termijn de zeespiegelstijging als gevolg van klimaatverandering overschaduwen. Dit bemoeilijkt ook de vergelijking (bijvoorbeeld in de Zeespiegelmonitor, 2018) tussen recente waarnemingen en projecties van regionale zeespiegelstijging in scenario’s voor de toekomst (bijvoorbeeld van Van den Hurk et al., 2014 of Vermeersen et al., 2018) of tussen waarnemingen en projecties van opwarming. Die projecties zijn namelijk gebaseerd op klimaatmodellen, die wel zeespiegelvariabiliteit simuleren, maar niet per se met dezelfde timing als zeespiegelvariabiliteit in de werkelijkheid.

Regionale zeespiegelstijging of zelfs een versnelling van die stijging zou een stuk makkelijker te detecteren zijn zonder inter-jaarlijkse zeespiegelvariabiliteit. Voor een deel van de variabiliteit van het zeeniveau kun je corrigeren, mits je goed begrijpt wat de oorzaak hiervan is. Een studie uit 2017 van Theo Gerkema (NIOZ) en Matias Duran-Matute (TU Eindhoven) (Gerkema and Duran-Matute, 2017) is hier een mooi voorbeeld van. Gerkema en Duran-Matute laten zien dat de inter-jaarlijkse variabiliteit van de zeespiegel aan de Nederlandse kust nauw samenhangt met de gemiddelde kracht en de richting van de wind in dat jaar. In een jaar waarin er gemiddeld een sterke wind vanuit het (zuid)westen waait is het gemiddelde zeeniveau aan de Nederlandse kust hoger, en andersom, omdat de wind het water als het ware opstuwt in richting van de Nederlandse kust. Het resultaat is een positieve correlatie tussen het jaarlijks gemiddelde zeeniveau en windenergie in de west/oost richting. Het gemeten windsignaal kun je vervolgens gebruiken om het gemeten zeeniveau te corrigeren voor schommelingen die worden aangedreven door de wind. Het resultaat is een meetsignaal met een stuk minder ruis, waardoor de foutmarge van de geschatte zeespiegeltrend met een factor 4 kan afnemen (Gerkema and Duran-Matute, 2017).

Een ander voorbeeld van inter-jaarlijkse variabiliteit is te zien in klimaatmodellen. Voor dezelfde klimaatmodellen als waarop zeespiegelprojecties voor de 21e eeuw gebaseerd zijn (bijv. Church et al., 2013; Van den Hurk et al., 2014; Vermeersen et al., 2018), zijn ook simulaties beschikbaar waarbij de concentratie broeikasgassen in de atmosfeer constant wordt gehouden op het niveau van voor de industriële revolutie (zogenaamde ‘pre-industrial control runs’, Taylor et al., 2012). Ondanks dat het zeeniveau in deze simulaties dus niet wordt beïnvloed door klimaatverandering, zijn er in zulke simulaties over periodes van 20 jaar toch trends in het zeeniveau van meer dan 2 mm/jaar in de Noordzee te vinden (Tinker et al., 2020). Die trends moeten dus wel worden veroorzaakt door de interne variabiliteit van het model. De trend in het zeeniveau in de Noordzee zoals afgeleid uit satellietmetingen is ongeveer net zo groot (Sterlini et al., 2017), en dus niet zo makkelijk van die variabiliteit te onderscheiden.
Lees verder

7 tot 12 meter

Trouw had deze week een interview met de nieuwe fractievoorzitter van D66 Rob Jetten en met de Europese klimaatspecialist van die partij Gerben Jan Gerbrandy. Gerbrandy maakt in dat interview een enorme misser:

Zelfs als we de beloftes van Parijs netjes uitvoeren, stijgt de zeespiegel deze eeuw zeven tot twaalf meter. Dat is de eeuw die mijn zoon zal meemaken. Hij is tegen het eind van deze eeuw een bejaarde man. Dat is de urgentie.

Er is geen enkele serieuze projectie die ook maar in de buurt komt van 7 tot 12 meter zeespiegelstijging deze eeuw, ook niet in een worst-case scenario, zelfs als er helemaal niets zou worden gedaan om broeikasgasemissies te beperken. Een recent advies aan de Deltacommissaris geeft 3 meter zeespiegelstijging als bovengrens in een scenario met extreme opwarming. Pas een eeuw later zou, in het ergste geval, de stijging in de buurt kunnen komen van de cijfers die Gerbrandy geeft. Bij het halen van de doelstellingen van Parijs is het worst-case scenario 2 meter in 2100.

En wat deed Gerbrandy toen hij op deze enorme fout werd gewezen? Zich verschuilen achter een wetenschapper en “IPCC-lid”.

Wie ons kent weet wat wij in zo’n geval gaan doen: de bron zoeken. Waarschijnlijk hebben we die ook gevonden: een presentatie van Hans Otto Pörtner (die overigens geen zeespiegel-deskundige is, maar onderzoek doet naar mariene ecosystemen) die een zeespiegelstijging laat zien die overeenkomt met wat Gerbrandy zegt. Alleen is dat de zeespiegelstijging op zeer lange termijn, van eeuwen tot millennia. En dus geen verwachting voor de komende eeuw. Pörtner baseert zich op Knutti et al., 2015.

 

We hebben Gerbrandy in een tweet gewezen op de fout die hij waarschijnlijk heeft gemaakt. Antwoord is tot nu toe uitgebleven.

Als we hier kritiek hebben op politici zijn dat meestal vertegenwoordigers van de (verre) rechterkant van het politieke spectrum. Omdat men daar de grootste moeite lijkt te hebben met het accepteren van de wetenschap over de menselijke invloed op het klimaat. Maar slordige omgang met wetenschappelijke inzichten en conclusies is, zo blijkt maar weer eens, niet gebonden aan één politieke kleur.

Dat een politicus zich eens vergist is geen probleem. Wetenschap is omvangrijk, complex en genuanceerd en dan is een foutje zo gemaakt. Maar dat die politicus zijn fout niet volmondig erkent, maar hem in de schoenen van de wetenschap of van een wetenschapper probeert te schuiven, dat is wel verwijtbaar. En het is slecht voor het vertrouwen in zowel de politiek als in de wetenschap.

Hoe 0,13 mm/jaar door vervorming van de zeebodem in de media wordt vervormd

Gastblog van Thomas Frederikse van de TU Delft

Soms gaan journalisten met de wetenschap aan de haal. Mij is dat laatst overkomen, met tot gevolg dat menig online nieuwsforum een stuk bevatte over mijn werk, tot aan de extreemrechtse website Breitbart aan toe. Wel gaf het een inkijkje in de keuken van de kopieer-journalistiek. Dat onderzoekers zelf hun werk nogal eens aandikken in persberichten is al vaak besproken, en ook bevestigd in wetenschappelijk onderzoek. Klimaatwetenschap vormt hierop helaas geen uitzondering, maar in dit geval zijn het de journalisten die er een zooitje van hebben gemaakt.

De kop op Breitbart, waar deze technische studie op karakteristieke wijze wordt geframed

Eerst het technische verhaal. De zeespiegel wordt zowel vanaf het land, via zogenaamde peilmeetstations, als vanaf satellieten gemeten. Deze meetmethodes verschillen in het referentiepunt ten opzichte waarvan de veranderingen in de zeespiegel worden gemeten. Simpel gezegd: satellieten meten vanaf het middelpunt van de aarde, en peilmeetstations meten de zeespiegelveranderingen ten opzichte van het land. Dat gaat prima, totdat het land gaat bewegen: stel dat het land zakt, dan ziet het peilmeetstation de zeespiegel stijgen, en de satelliet niet.

Vaak willen we af van die landbewegingen, omdat het meestal lokale effecten betreft. Inklinkende grond en plaattektoniek zijn vaak oorzaken van zulke landbewegingen, en daar zijn we in dit geval niet in geïnteresseerd. Daarom worden steeds meer peilmeetstations van nauwkeurige GPS-apparatuur voorzien die meten hoe hard een station beweegt.

Alleen zijn die bewegingen van de bodem niet altijd een lokaal effect. De aarde is geen harde bal, maar verandert van vorm wanneer je er druk op uitoefent, net als een voetbal. Zo gaat de aarde onder onze voeten per dag enkele centimeters op en neer door de aantrekkingskracht van de maan. Ook is de aarde nog steeds aan het bijkomen van de ijsmassa’s uit de laatste ijstijd. Dankzij dit proces, bekend als Glacial Isostatic Adjustment komt een groot deel van Scandinavië omhoog, en daalt de zeespiegel in bijvoorbeeld Stockholm enkele millimeters per jaar. De aarde vervormt ook wanneer we massa over het aardoppervlak verplaatsen. Dat is geen rocket science: we weten al heel lang hoe dit werkt, en sinds het klassieke werk van William Farrell uit 1972 kunnen we deze vervorming ook berekenen. Lees verder

Versnelt de zeespiegelstijging? – Deel 2

Door de alsmaar stijgende broeikasgasconcentraties zal het deze eeuw warmer worden op onze aarde. De grote ijskappen zullen hier op reageren (zoals nu al het enigszins het geval is) en meer massa verliezen, wat bijdraagt aan de zeespiegelstijging. De satellietmetingen van het zeeniveau sinds 1993 laten zien dat vooral de bijdrage van het smelten van de ijskap op Groenland aan de zeespiegelstijging is toegenomen en over de periode vanaf 2004 circa 25% bedraagt. De nieuwste gegevens wijzen op een toename in de snelheid van de zeespiegelstijging.

De komst van de satellieten heeft de meetmogelijkheden aan de aarde aanzienlijk uitgebreid en dat geldt ook voor het zeeniveau. Sinds eind 1992 zijn er diverse satellieten gelanceerd die door middel van radar de veranderingen in het zeeniveau in kaart kunnen brengen. Een groot voordeel boven getijdenmetingen is dat via de satellieten ook het zeeniveau van de grote oceaanvlakten gemeten kan worden. Simpel wordt het echter nooit, ook bij deze meettechniek zijn diverse correcties nodig zoals onder andere voor de hoeveelheid waterdamp in de atmosfeer, de plaatselijke luchtdruk en tevens voor het opveren van het land. De lineaire trend in de zeespiegelstijging op basis van de satellietdata vanaf 1993, zoals die nu wordt gerapporteerd, bedraagt circa 3,2 tot 3,4 mm/jaar. Ondanks de geconstateerde toename van het massaverlies van de grote ijskappen was er geen versnelling in de zeespiegelstijging zichtbaar. Eerder was het tegengestelde het geval, de trend over het eerste decennium van de satellietmetingen was hoger dan over het tweede decennium. Zie de grafiek in figuur 1.

Figuur 1: De zeespiegelstijging op basis van satellietdata zoals gerapporteerd door de University of Colorado. Bron: Fasullo et al. 2016.

Lees verder

Versnelt de zeespiegelstijging? – Deel 1

Door de alsmaar stijgende broeikasgasconcentraties zal het deze eeuw warmer worden op onze aarde. De grote ijskappen zullen hier op reageren (zoals nu al het enigszins het geval is) en meer massa verliezen, wat bijdraagt aan de zeespiegelstijging. De huidige snelheid van de zeespiegelstijging is met circa 3 mm per jaar een stuk hoger dan het gemiddelde over de gehele 20e eeuw (< 2 mm per jaar). De algemene verwachting is dat het zeeniveau deze eeuw sneller zal gaan stijgen dan nu het geval is.

De huidige zeespiegelstijging bedraagt circa 3 mm/jaar. Als je dat simpelweg extrapoleert naar de toekomst, worden we aan het einde van deze eeuw geconfronteerd met een extra zeespiegelstijging van zo’n 30 cm. Simpelweg extrapoleren geeft natuurlijk niet de beste prognose. De zeespiegelstijging wordt namelijk mede bepaald door hoeveel warmer het deze eeuw zal worden (wat leidt tot thermische uitzetting van het water) én hoe de landgletsjers en de grote ijskappen op deze opwarming zullen reageren. In de klimaatwetenschap wordt dat uiteraard allemaal meegewogen en men verwacht, mede afhankelijk van de toekomstige emissies, dat de zeespiegel sneller zal gaan stijgen de komende decennia tot eeuwen. Het IPCC rapporteerde in 2013 (tabel 13.5) dat de zeespiegelstijging in 2100 ergens tussen een halve meter tot een meter zou bedragen (bij ongewijzigd beleid – RCP8.5 scenario). De kennis over de invloed van opwarming op de ijskappen neemt snel toe en dat heeft er toe geleid dat de laatste schattingen van vooral de bovengrenzen van de mogelijke zeespiegelstijging in 2100 een stuk hoger liggen, zie het tabelletje hieronder (afkomstig van RealClimate). De meest recente artikelen rapporteren bovengrenzen van zelfs meer dan 2 meter door een mogelijke toename van de bijdrage van de grote ijskap van Antarctica (zie bijv. De Conto 2016, Le Bars 2017). De onzekerheid in de hoogte van de toekomstige zeespiegelstijging is groot, dus de wetenschappers hebben nog werk genoeg. Een vervelende bijkomstigheid: de onzekerheid lijkt vooral aan de kant van mogelijke tegenvallers te zitten.


Lees verder

Zo veranderen een paar graden de wereld

Een klimaatterugblik vanaf 2017

Een jaartje meer of minder telt op klimaatschalen eigenlijk niet, we nemen niet voor niets een gemiddelde van 30 jaar als we over het klimaat spreken. Toch is het interessant om zo nu en dan eens terug te blikken en daarbij wat plaatjes in de vorm van grafieken te bekijken. Een soort klimaatterugblikstrip.

Mondiaal gemiddelde temperatuur

Allereerst de temperatuur. Het zal de meesten niet ontgaan zijn: de gemiddelde temperatuur op aarde scoorde in 2016 weer eens een record, voor de derde keer op een rij maar liefst. Ook de satellietwaarnemingen, die de temperatuur van hogere luchtlagen representeren, rapporteerden records. De grafiek hieronder van drie oppervlakte-temperatuurdatasets laat zien dat het (volgens de langetermijntrend) inmiddels circa 1 graad warmer is op aarde dan rond het einde van de 19e eeuw. Duidelijk is ook dat sinds circa 1970 de temperatuurstijging op de klimaatschaal van 30 jaar onverminderd doorgaat.


Lees verder

Over het onbestaande verband tussen aardwarmte en klimaatverandering en het nut van onzindetectie

Enkele energiestromen in het klimaatsysteem

Binnenkomend zonlicht: 340 W/m2
Geabsorbeerd zonlicht: 240 W/m2
Antropogene forcering: 2,3 W/m2
Stroom van aardwarmte naar het oppervlak: 0,09 W/m2

Het lijstje hierboven vergelijkt de hoeveelheid aardwarmte die het klimaatsysteem in stroomt met enkele andere energiestromen. De gegevens maken in één oogopslag duidelijk dat aardwarmte geen rol van betekenis speelt in het klimaat. Voor ik daar wat dieper op inga, permitteer ik me een lange en enigszins meanderende inleiding.

Scepsis, een mens heeft er, zeker in een tijd van blogs, Facebooken en Twitters, niet snel teveel van. Dan bedoel ik wel echte scepsis: niet zomaar iets voor waar aannemen, ook niet – of: vooral niet – als je het graag zou willen geloven. Wie scepsis aanneemt als levenshouding kan in de loop der jaren een vrij goed afgestelde onzindetector ontwikkelen.

Het herleiden van beweringen naar hun originele bron is een goed begin van een sceptische houding, zeker wanneer het over een wetenschappelijk onderwerp gaat. De oorspronkelijke bron is vaak een wetenschappelijk artikel of rapport, en soms een blogpost of tweet van, of een interview met een onderzoeker. Als in een verhaal niet of niet duidelijk wordt verwezen naar die originele bron, kan een beetje achterdocht geen kwaad. Natuurlijk is het voor niemand mogelijk om altijd maar weer alles te checken. Dat hoeft ook niet. Zo nu en dan een steekproef is genoeg om te zien waar de informatie meestal betrouwbaar is en waar dat niet het geval is. Zo zal een steekproef, zoals die bijvoorbeeld door enkele reageerders op het blog van William Connolley werd uitgevoerd, al snel duidelijk maken dat er niks klopt van de beweringen waarmee het pseudosceptische No Tricks Zone probeert een al vele malen weerlegde mythe – dat veel wetenschappers in de jaren ‘70 van de vorige eeuw afkoeling voorspeldennieuw leven in te blazen. Volgens No Tricks Zone zouden 285 wetenschappelijke artikelen uit de jaren ‘60, ‘70 en ‘80 afkoeling voorspellen, maar het lijkt (zo blijkt ook uit mijn eigen steekproef) veelal om artikelen te gaan die ofwel helemaal geen afkoeling voorspellen, of die expliciet aangeven maar één factor (aerosolen, Milankovic cycli) onder de loep te nemen. Een enkel foutje in zo’n lijst zou best begrijpelijk zijn, maar als het moeite kost om ook maar één artikel te vinden dat zo’n claim ondersteunt, is die claim niet geloofwaardig. En dat geldt ook voor degene die die claim doet. Lees verder

Opwarming “slowdown”, een zeespiegel-hockeystick en andere nieuwe wetenschap

Hieronder enkele korte beschrijvingen van een paar klimaatwetenschappelijke onderzoeken die de afgelopen maand mijn interesse hebben getrokken en die hier op Klimaatverandering nog niet zijn besproken.

Early-2000s warming slowdown

Als je de oppervlaktetemperatuurdata vergelijkt met het gemiddelde van de klimaatmodeldata, zoals die in het laatste IPCC rapporten zijn gebruikt (CMIP5), dan is het duidelijk dat na het jaar 2000 de observaties aan de ondergrens liggen van de range van de modeldata. De snelheid van opwarming na 2000 is lager dan over de afgelopen 30 jaar en lager dan het modelgemiddelde: de “early-2000s warming slowdown”, beter bekend als de zogenaamde “hiatus” of “opwarmingspauze”. In een commentaar in het tijdschrift Nature begin februari nemen een aantal bekende klimaatonderzoekers (waaronder Fyfe, Meehl, Santer en Mann) nogmaals die periode na 2000 onder de loep (zie ook Ed Hawkins’ Climate Lab Book). Zij gebruiken de term “warming slowdown” voor deze periode, zie de figuur hieronder (figuur 1 uit het artikel van Fyfe et al.).

Figuur 1. Een vergelijking tussen observaties oppervlaktetemperature en de range van klimaatmodelresultaten (CMIP5). Bron Fyfe et al. Fig. 1.

Lees verder