Tagarchief: Klaus Hasselmann

Orde en chaos in het klimaat

Ooit, lang geleden, kon je op zondag, ik meen na de voetbalsamenvattingen van Studio Sport, naar de Lotto-trekking kijken. Die verliep via een vaste procedure. Eenenveertig genummerde balletjes zaten keurig op volgorde in een houder waaruit ze allemaal tegelijk werden losgelaten. Ze vielen in een grote, bol van plexiglas die even ronddraaide. Na een aantal rotaties keerde de draairichting om, waardoor enkele balletjes in een gootje terechtkwamen. Het eerste balletje in het gootje kwam naar buiten. Het hele procedé herhaalde zich nog zes keer, en daarmee had je de uitslag van zes winnende getallen plus een reservegetal.

Wat mij fascineerde, was dat dat helemaal identieke proces elke keer een andere uitkomst opleverde. Blijkbaar was ik als kind al geneigd tot deterministisch denken. En dat bracht me bij de voor de hand liggende verklaring. Natuurlijk zijn die balletjes niet helemaal perfect rond, is het materiaal waar ze van gemaakt zijn niet overal exact even dik of zwaar, of kunnen kleine verschillen in temperatuur of luchtdruk ervoor zorgen dat de balletjes net iets anders over elkaar rollen. Zo konden hele kleine, op het oog onwaarneembare verschillen de trekking perfect onvoorspelbaar maken. Het is, leerde ik pas veel later, een voorbeeld van gevoelige afhankelijkheid (sensitive dependence). En dat begrip is waar het in de chaostheorie om draait: deterministische processen die toch een onvoorspelbaar verloop hebben.

De paradox van deterministische chaos

Er zit een paradox in een chaotisch systeem, zoals de lottoballetjesmachine. Alles wat er gebeurt, verloopt volgens vrij eenvoudige natuurwetten van oorzaak en gevolg. En toch is de uitkomst in onze beleving puur toeval. Maar omdat die wetten van oorzaak en gevolg van toepassing zijn, zit er altijd wel een grens aan dat toeval. Er kwam nooit meer dan één balletje tegelijk uit de machine. Het getal op dat balletje was nooit groter dan 41. En dat er in plaats van een lottoballetje ineens een kaasblokje naar buiten kwam was uitgesloten. Voor een lottoballetjesmachine heb je natuurlijk geen complexe theorie nodig om dergelijke grenzen van het toeval in te zien. Voor andere chaotische (of, in jargon: non-lineaire dynamische) systemen liggen die grenzen nog wel eens minder voor de hand. En daar kan de kennis van de chaostheorie behulpzaam zijn.

De vlinder van Lorenz
Lees verder

De Nobelprijs voor klimaatwetenschappers

Afgelopen week werd bekend dat klimaatwetenschappers Syukuro Manabe en Klaus Hasselmann dit jaar de Nobelprijs voor natuurkunde krijgen. Ze delen de prijs met de Italiaanse theoretisch natuurkundige Giorgio Parisi. Parisi deed fundamenteel onderzoek aan complexe fysische systemen. Er lopen verschillende lijntjes tussen dat onderwerp en de klimaatwetenschap. Vroege weermodellen zijn voorouders van zowel het onderzoek van Manabe en Hasselman, als dat van Parisi. Onderzoek naar complexe systemen kwam pas goed op gang nadat meteoroloog Edward Lorenz bij toeval de chaostheorie op het spoor kwam, via berekeningen met zo’n model. Bij het theoretisch onderzoek naar complexe systemen wordt veel gebruik gemaakt van computermodellen. Meteorologie was, samen met kernfysica, een vakgebied dat pionierde op dat gebied. De kennis en ervaring van die pioniers kwamen goed van pas bij het onderzoek naar chaos en complexiteit. Aan de andere kant is het klimaat een complex fysisch systeem, en dus zijn resultaten van fundamenteel onderzoek naar dergelijke systemen ook van belang voor het klimaatonderzoek.

Onder volgers van de klimaatwetenschap is de in Japan geboren Amerikaan Syukuro Manabe veruit de bekendste van de drie winnaars. Niet omdat Manabe altijd de aandacht heeft gezocht, integendeel. Het is zijn werk dat de aandacht trok. Hoe belangrijk Manabe is geweest voor de ontwikkeling van moderne klimaatmodellen is nauwelijks te overschatten. Toen Manabe in de late jaren ‘50 van de vorige eeuw naar de VS kwam was daar net een eerste, rudimentair klimaatmodel gebouwd. Dat model kon vrij adequaat enkele patronen in de grootschalige atmosferische circulatie simuleren op een plat stuk aarde. Aan het eind van de twintigste eeuw waren er uitgebreide modellen, met een realistische topografie, met seizoenen, die alle cruciale processen in zowel de atmosfeer als de oceaan simuleerden: circulatie, de hydrologische cyclus, wolken, emissie en absorptie van straling. Aan vrijwel elke stap die er is gezet vanaf het rudimentaire naar het complexe model, heeft Manabe wel iets bijgedragen.

Lees verder