Auteursarchief: Hans Custers

Over het onbestaande verband tussen aardwarmte en klimaatverandering en het nut van onzindetectie

Enkele energiestromen in het klimaatsysteem

Binnenkomend zonlicht: 340 W/m2
Geabsorbeerd zonlicht: 240 W/m2
Antropogene forcering: 2,3 W/m2
Stroom van aardwarmte naar het oppervlak: 0,09 W/m2

Het lijstje hierboven vergelijkt de hoeveelheid aardwarmte die het klimaatsysteem in stroomt met enkele andere energiestromen. De gegevens maken in één oogopslag duidelijk dat aardwarmte geen rol van betekenis speelt in het klimaat. Voor ik daar wat dieper op inga, permitteer ik me een lange en enigszins meanderende inleiding.

Scepsis, een mens heeft er, zeker in een tijd van blogs, Facebooken en Twitters, niet snel teveel van. Dan bedoel ik wel echte scepsis: niet zomaar iets voor waar aannemen, ook niet – of: vooral niet – als je het graag zou willen geloven. Wie scepsis aanneemt als levenshouding kan in de loop der jaren een vrij goed afgestelde onzindetector ontwikkelen.

Het herleiden van beweringen naar hun originele bron is een goed begin van een sceptische houding, zeker wanneer het over een wetenschappelijk onderwerp gaat. De oorspronkelijke bron is vaak een wetenschappelijk artikel of rapport, en soms een blogpost of tweet van, of een interview met een onderzoeker. Als in een verhaal niet of niet duidelijk wordt verwezen naar die originele bron, kan een beetje achterdocht geen kwaad. Natuurlijk is het voor niemand mogelijk om altijd maar weer alles te checken. Dat hoeft ook niet. Zo nu en dan een steekproef is genoeg om te zien waar de informatie meestal betrouwbaar is en waar dat niet het geval is. Zo zal een steekproef, zoals die bijvoorbeeld door enkele reageerders op het blog van William Connolley werd uitgevoerd, al snel duidelijk maken dat er niks klopt van de beweringen waarmee het pseudosceptische No Tricks Zone probeert een al vele malen weerlegde mythe – dat veel wetenschappers in de jaren ‘70 van de vorige eeuw afkoeling voorspeldennieuw leven in te blazen. Volgens No Tricks Zone zouden 285 wetenschappelijke artikelen uit de jaren ‘60, ‘70 en ‘80 afkoeling voorspellen, maar het lijkt (zo blijkt ook uit mijn eigen steekproef) veelal om artikelen te gaan die ofwel helemaal geen afkoeling voorspellen, of die expliciet aangeven maar één factor (aerosolen, Milankovic cycli) onder de loep te nemen. Een enkel foutje in zo’n lijst zou best begrijpelijk zijn, maar als het moeite kost om ook maar één artikel te vinden dat zo’n claim ondersteunt, is die claim niet geloofwaardig. En dat geldt ook voor degene die die claim doet. Lees verder

De “nieuwe inzichten” van Simon Rozendaal in Elsevier: een fact-check

Afgelopen week verscheen in Elsevier een stuk [link naar de pdf van dit stuk op last van Elsevier verwijderd, we mogen alleen linken naar de versie achter de betaalmuur] van Simon Rozendaal – die zich afgelopen najaar tijdens een paneldiscussie in Delft net iets te nadrukkelijk uitriep tot “objectief wetenschapsjournalist”– onder de kop: “Opwarming valt toch mee.” Het verhaal is grotendeels gebaseerd op uitlatingen van Nic Lewis en Marcel Crok en bevat dan ook vooral argumenten van deze twee, waarvan er vele al herhaaldelijk zijn genuanceerd of weerlegd. Ook op dit blog. Daarover verderop in dit stuk meer.

Wellicht interessanter dan het voor de zoveelste keer herhalen van bekende argumenten, is de wat subtielere manoeuvre die Rozendaal maakt wanneer het even echt over nieuwe wetenschappelijke inzichten gaat. Hij lijkt wederhoor te plegen bij wetenschappers van het KNMI, maar weet de informatie die hem daar wordt aangereikt met de hulp van zijn andere twee geïnterviewden toch weer in de richting van de vooraf gewenste conclusie te draaien. Door van de uitkomst van wetenschappelijke analyse iets heel anders te maken.

De argumenten van de mensen van het KNMI liggen in de lijn van het recente onderzoek van Richardson et al, waar ik eind juni over schreef: verschillen tussen klimaatmodellen en waarnemingen horen bij de normale wetenschappelijke onzekerheid, ze worden steeds beter begrepen en vormen dus geen reden om modelanalyses simpelweg terzijde te schuiven. Rozendaal gaat daarna door over Richardson et al.. Deze onderzoekers constateren, om het nog eens kort samen te vatten, dat de mondiaal gemiddelde temperatuur uit modelberekeningen niet helemaal vergelijkbaar is met de mondiaal gemiddelde temperatuur uit observaties. Het heeft te maken met de beperkte dekkingsgraad van metingen in bepaalde delen van de wereld, die in modellen niet bestaat, en met het feit dat modelresultaten de temperatuur geven van de atmosfeer vlak boven het aardoppervlak, terwijl in de observaties de temperatuur van de atmosfeer boven land en zeeijs wordt gecombineerd met die van het water aan het oceaanoppervlak. Ze laten vervolgens zien dat modelresultaten veel dichter bij de observaties liggen als er rekening wordt gehouden met deze verschillen. Ze presenteren deze bevinding voor wat het is: een interessante uitkomst van een interessante analyse. Wetenschap dus.

Laten we nu eens kijken wat in Elsevier staat:

De Amerikaanse klimaatonderzoeker Mark Richardson schreef eind juni met drie collega’s in Nature Climate Change eveneens dat thermometers niet de ‘echte’ temperatuur weergeven. Op zijn blog Climate Lab Book schreef de Britse onderzoeker Ed Hawkins vorige week dat de ‘echte’ opwarming 24 procent groter is dan het wereldwijde meetnetwerk HadCRUT4 aangeeft, door alle klimaatdeskundigen als toonaangevend beschouwd. In werkelijkheid zou de gemiddelde temperatuur op aarde 0,2 graden hoger zijn dan de thermometers aangeven.

Dat is koren op de molen van klimaatsceptici. Er blijkt een kloof te bestaan tussen de computers en de thermometers, en wat doen de bouwers en beheerders van de modellen? Ze zeggen dat de thermometers de verkeerde temperatuur aangeven en corrigeren met behulp van de computermodellen. Dat is misschien geen gesjoemel, maar wel gegoochel.

Wat in het artikel van Richardson nog een interessante wetenschappelijke verklaring van het verschil tussen observaties en modellen was, is hier iets heel anders geworden: een waardeoordeel. Zo’n zelfverzonnen waardeoordeel is veel makkelijker aan te vallen dan een droge wetenschappelijke conclusie. Voor de zekerheid – misschien is de manoeuvre voor sommige lezers te subtiel- worden dan nog de kwalificaties “gesjoemel” en “gegoochel” toegevoegd. Wie nog eens kijkt naar wat de onderzoekers echt hebben geschreven, zowel in hun artikel als in de blogstukken erover, zal zien dat ze juist heel zorgvuldig elk waardeoordeel vermijden. Omdat het, wetenschappelijk gezien, niet interessant is. En omdat wetenschappers allang weten dat noch observaties, noch modellen de “echte” temperatuur weergeven. Elk wetenschappelijk model heeft zijn beperkingen en elke wetenschappelijke waarneming heeft zijn onzekerheden. Het idee dat we een van de twee zouden moeten kiezen om zoiets als “de waarheid” te weten is niet bepaald wetenschappelijk. De suggestie dat Richardson et al. zoiets doen is zelfs anti-wetenschappelijk te noemen, omdat het volledig haaks staat op waar het in hun onderzoek, en in de wetenschap in het algemeen, om draait: begrijpen en verklaren. Daarmee komt de wetenschap vooruit. De verschillen tussen wetenschappelijke modellen en waarnemingen, of de onderlinge verschillen tussen diverse modellen en analysemethodes, markeren in elke wetenschappelijke discipline het terrein waar er vooruitgang te boeken is. Richardson en zijn collega’s hebben zich op dat terrein begeven en een aannemelijke verklaring gevonden voor een flink deel van het verschil tussen klimaatmodellen en observaties. Wie in die verklaring een opportunistische claim leest, of een waardeoordeel, diskwalificeert de verklaring niet, of de onderzoekers die die verklaring vonden, maar alleen zichzelf. Het heeft er alle schijn van dat Rozendaal (al dan niet op gezag van Crok en Lewis) zijn eigen onvermogen om wetenschappelijke resultaten los te zien van zijn persoonlijke opvattingen en voorkeuren projecteert op de onderzoekers, die zich juist uiterst zorgvuldig beperken tot nuchtere wetenschappelijke constateringen. Lees verder

Schattingen van klimaatgevoeligheid bij elkaar gebracht

Vertaling/bewerking van een blogpost van Ed Hawkins, aangevuld met informatie uit een toelichting van Kevin Cowtan, op de site van de University of York

Klimaatgevoeligheid geeft aan hoe het klimaatsysteem reageert op een verandering in zijn energiebalans, ofwel een stralingsforcering. Klimaatgevoeligheid kan via verschillende methodes bepaald worden, waarbij schattingen gebaseerd op historische instrumentele metingen van de temperatuur meestal lager uitvallen dan wat volgt uit geavanceerde modellen die het klimaat simuleren, of uit andere methodes. Voor sommigen was dit aanleiding om uiterst voorbarig te concluderen dat de modellen te gevoelig zouden zijn.

Een nieuw onderzoek – Richardson et al., verschenen in Nature Climate Change; code en data zijn beschikbaar via de University of York – verklaart de verschillen grotendeels. De uitkomsten van de twee methodes zijn niet helemaal vergelijkbaar omdat ze op een verschillende benadering van de mondiaal gemiddelde temperatuur zijn gebaseerd.

Het onderzoek heeft ook implicaties voor het begrip van de opwarming die volgt uit instrumentele metingen. De daadwerkelijke opwarming zou bijna 25% hoger zijn dan blijkt uit de HadCRUT4 dataset.

Historische meteorologische data bevatten metingen van de temperatuur van de atmosfeer boven land en boven zeeijs en metingen van de temperatuur van het zeeoppervlak. De gegevens zijn vanzelfsprekend alleen beschikbaar voor plekken op aarde waar ze daadwerkelijk gemeten zijn, door weerstations of door schepen. De verandering van de gemiddelde mondiale temperatuur (zoals HadCRUT4) wordt bepaald door deze data te combineren.

De (verandering van de) mondiaal gemiddelde temperatuur die uit modelsimulaties wordt bepaald is meestal de temperatuur van de atmosfeer op twee meter hoogte, gemiddeld over het gehele aardoppervlak (deze temperatuur noemt men in het artikel “tas”). Dit is de meest eenvoudige manier om dit te berekenen. Heeft dit verschil invloed?

Eerder onderzoek van Cowtan et al. liet zien dat dit inderdaad het geval is. De subtiele verschillen in de manier waarop de mondiale temperatuur wordt geschat kan van significante invloed zijn op de conclusies die worden verbonden aan een vergelijking van modellen en observaties.

Terugreizen in de tijd om alsnog metingen te doen op plekken van de aarde waarvoor geen instrumentele data beschikbaar zijn is onmogelijk. Om toch tot een eerlijke “apples to apples” vergelijking te komen, moet er daarom anders gekeken worden naar modelresultaten. De onderzoekers hebben dit gedaan door, bij wijze van spreken, virtuele HadCRUT4 data te berekenen uit modelresultaten. Ze hebben de volgende twee factoren in beschouwing genomen:

  • de beperkte dekking van het aardoppervlak door meetstations (bijvoorbeeld in het Noordpoolgebied); de modeldata die gebasseerd zijn op dezelfde dekkingsgraad als de metingen noemt men “masked”;
  • het gebruik van de gemodelleerde temperatuur van het zeeoppervlak in plaats van die van de atmosfeer boven de oceaan, consistent met de metingen; deze modeldata noemt men “blended”.

Figuur 1 geeft de resultaten van deze analyse.

De rode lijn in figuur 1a geeft de gangbare atmosferische temperatuur uit modelsimulaties weer, gemiddeld over het hele aardoppervlak. De blauwe lijn laat het resultaat zien van een eerlijke vergelijking van modellen en waarnemingen. Het verschil tussen waarnemingen en modellen verdwijnt dan grotendeels. Het verschil tussen atmosferische temperatuur en temperatuur van het zeeoppervlak en de onvolledige dekkingsgraad van het aardoppervlak dragen hier ruwweg in gelijke mate aan bij.

Het effect is significant. Volgens de CMIP5 simulaties zou meer dan 0,2°C opwarming niet zichtbaar zijn in de instrumentele data, door de onvolledige dekkingsgraad en het gebruik van de temperatuur van het zeeoppervlak (figuur 1b). Dit is verklaarbaar omdat het Noordpoolgebied, met een (historisch) lage dekkingsgraad, veel sneller opwarmt dan het mondiaal gemiddelde en omdat de atmosfeer sneller opwarmt dan de oceaan, door het verschil in warmtecapaciteit.

richardson_fig1

Figuur 1. Mediane temperatuur volgens CMIP5 simulaties, vergeleken met HadCRUT4 observaties.

Lees verder

Zin en onzin over de rol van stofdeeltjes bij het ontstaan van wolken

Er zijn de laatste tijd zo hier en daar weer verhalen verschenen over de rol van aerosolen bij het ontstaan van wolken, waarin niet zelden feit en fictie door elkaar worden gehaald. Dit naar aanleiding van drie nieuwe artikelen (zie voor meer informatie over deze onderzoeken het nieuwsbericht van Nature) die diep ingaan op het ontstaan van die aerosolen. Omdat hier zoveel misverstanden over bestaan, kan het geen kwaad om eens wat zaken op een rijtje te zetten.

Om bij het begin te beginnen: de eerste factor die bepaalt of er wel of geen wolken ontstaan op een bepaalde plek is de luchtvochtigheid. Als lucht niet verzadigd is met waterdamp, ofwel bij een relatieve vochtigheid beneden de 100%, kunnen er geen wolken ontstaan. Als lucht wel verzadigd is kan dat wel, maar er is nog iets nodig.

De complicatie zit ‘m in het fenomeen faseovergang. De overgang van een stof tussen vaste, vloeibare en gasfase heeft vaak een duwtje in de rug nodig om op gang te komen. Dat is bijvoorbeeld te zien in een glas bier of frisdrank: de koolzuurbelletjes ontstaan alleen op bepaalde plekken, waar ze zich kunnen ontwikkelen bij microscopisch kleine oneffenheden in het glas. Kookvertraging in een magnetron is ook een bekend fenomeen: water kan opgewarmd worden tot boven het kookpunt, maar pas overgaan in de gasfase door de schok als het glas uit de oven wordt gepakt. Voor de condensatie van waterdamp tot druppeltjes of ijskristallen in de lucht geldt iets vergelijkbaars: helemaal zuivere lucht kan oververzadigd raken met waterdamp zonder dat er direct wolken ontstaan. Kleine stofdeeltjes in de lucht (aerosolen) kunnen hier het duwtje in de rug geven: watermoleculen condenseren op die deeltjes, die vervolgens uitgroeien tot druppeltjes of ijskristallen. Dergelijke stofdeeltjes worden wel condensatiekernen genoemd. Op Youtube wordt dit effect zichtbaar gemaakt met een eenvoudig experimentje (met excuses voor de muziek).

In een volledig stofvrije aardatmosfeer zouden minder wolken voorkomen dan in een atmosfeer die wat stoffiger is. Zonder de aanwezigheid van stofdeeltjes condenseert water niet zo snel: de relatieve vochtigheid kan dan oplopen tot 400%. (Een gevolg van het zogenaamde Kelvin effect.) In de aardatmosfeer zijn altijd wel wat stofdeeltjes aanwezig en zal een dergelijke oververzadiging daarom nooit voorkomen; de oververzadiging blijft beperkt tot enkele procenten. Omdat er altijd wel condensatiekernen aanwezig zijn is in de praktijk de luchtvochtigheid de bepalende factor voor het al of niet ontstaan van wolken. De mate van oververzadiging bepaalt hoeveel wolken er ontstaan, of beter: hoeveel waterdamp er condenseert.

De hoeveelheid condensatiekernen heeft vooral invloed op de eigenschappen van de bewolking. Het ligt voor dat hand dat er, in elk geval in eerste instantie, meer en kleinere druppeltjes zullen ontstaan naarmate het aantal condensatiekernen toeneemt. Elke condensatiekern vormt immers het begin van een druppeltje, als er meer condensatiekernen zijn wordt de hoeveelheid waterdamp die condenseert over meer druppeltjes verdeeld. Wolken worden dan witter: ze reflecteren meer zonlicht en hebben dus een afkoelend effect op het klimaat. Bovendien regenen de kleinere druppeltjes minder snel uit, waardoor deze wolken een langere levensduur hebben. Lees verder

CO2 is goed voor de plantjes. Maar meer is niet per se beter.

“CO2 is goed voor de plantjes” is een dooddoener die nog steeds met enige regelmaat terugkomt in discussies over het klimaat. Nu neem ik aan dat iedereen die er even over nadenkt wel snapt dat dit geen argument is om het maar niet te hebben over mogelijke gevolgen van bijvoorbeeld de stijgende zeespiegel of veranderende weerpatronen, met de daarbij horende toenemende risico’s van extreem weer; of over de gevolgen van de opwarming van de oceanen voor bijvoorbeeld het Groot Barrièrerif; of over de risico’s van een dalend zuurstofgehalte voor het leven in de oceanen; of over de verzuring van de oceaan met bijbehorende gevolgen voor allerlei beestjes met een kalkskelet.

DeoxImage

Termijn waarop zuurstofverlies in oceanen door klimaatverandering naar verwachting detecteerbaar is. (Bron: Matthew Long, NCAR)

En, alsof dat allemaal nog niet genoeg is, is het ook helemaal niet vanzelfsprekend dat “goed voor de plantjes” betekent dat het ook goed is voor de natuur. Voor zover iets al goed voor de natuur kan zijn. Daarover later meer.

Eerst maar eens de vraag: is CO2 echt goed voor planten? Het antwoord daarop is een volmondig ja. Dit kan wel “settled science” worden genoemd; het is kennis die al tientallen jaren wordt toegepast. In de glastuinbouw bijvoorbeeld, waar CO2 als groeibevorderend middel wordt gebruikt. Al in de jaren 90 van de vorige eeuw werd er daarom – ook vanwege die andere onomstreden wetenschappelijke kennis rondom CO2 – aan plannen gewerkt om CO2 van de industrie of de energiesector naar het Westland te transporteren. Plannen die al weer een tijd in de praktijk worden gebracht, al gaat dat nog niet altijd goed. Ook in projecties van toekomstige CO2-concentraties op basis van emissiescenario’s wordt, bijvoorbeeld in IPCC rapporten, rekening gehouden met de groeibevorderende eigenschappen van CO2. Suggesties dat de klimaatwetenschap die eigenschappen zou negeren of zelfs ontkennen – ik zie ze zo nu en dan nog voorbijkomen – zijn dan ook pure kolder. Lees verder

Het nieuws over Antarctica is meestal geen goed nieuws

DeConto_Pollard-fig2

Alleen al vanwege de afbeelding hierboven is een artikel dat onlangs verscheen in Nature een blogstukje waard. Het artikel: “Contribution of Antarctica to past and future sea-level rise” van DeConto en Pollard (het volledige artikel is toegankelijk via de link onderaan het nieuwsbericht op de site van Nature over dit onderzoek en via de link in een lezenswaardig artikel van de Washington Post) borduurt voort op eerder onderzoek naar mechanismen die delen van de ijskap van Antarctica instabiel kunnen maken. De te verwachten bijdrage van Antarctica is de grote onzekere factor in projecties van de zeespiegelstijging in deze eeuw en de eeuwen daarna. Dit is dus een terrein waar voor de wetenschap nog veel te ontdekken is, en de kennis hierover lijkt in flink tempo toe te nemen. DeConto en Pollard menen dat ze met de kennis die er inmiddels is de zeespiegelstijging die volgens paleoklimatologische reconstructies volgde op de laatste glacialen behoorlijk goed kunnen verklaren. Dat zou er op wijzen dat men de belangrijkste mechanismen inmiddels aardig in beeld heeft. En daarmee zouden toekomstprojecties aan betrouwbaarheid winnen.

Eerst even terug naar die afbeelding hierboven en naar het begrip instabiliteit. Of: waarom komt in de wetenschappelijke literatuur zo vaak het woord “collapse” voor, wanneer het om het smelten van grote ijsmassa’s gaat? Dat lijkt niet voor iedereen duidelijk te zijn. Zo meende een wetenschapsjournalist van een grote Nederlandse krant dat het gebruik van dat woord zou wijzen op een apocalyptisch wereldbeeld (of zoiets) en had een bekende Nederlandse pseudoscepticus het laatst over het “instorten van zeeijs”. De realiteit is dat het hier over instorten in de letterlijke betekenis gaat: bezwijken onder het eigen gewicht.

Wat is er dan precies aan de hand? IJsmassa’s van honderden meters of kilometers hoog houden niet in een keer op wanneer het onderliggende land beneden zeeniveau komt. Dus: waar het land op zou moeten houden en de oceaan zou moeten beginnen, ligt er gewoon nog ijs op de bodem. De enorme druk van het bovenliggende ijs duwt de ijsmassa langzaam weg in de richting van de oceaan, tot aan de plek – of eigenlijk: het gebied – waar het oceaan en ijs contact maken. In een stabiel klimaat blijft de overgang tussen ijs en oceaan op (min of meer) dezelfde plek liggen: het ijs dat in het overgangsgebied smelt wordt weer aangevuld vanuit de stromende gletsjer, die op zijn beurt weer wordt aangevuld door sneeuwval. In een opwarmend klimaat is dat minder vanzelfsprekend. De oceaan wint langzaamaan terrein en er verdwijnt ijs in het overgangsgebied. Omdat het om zulke enorme ijsmassa’s gaat, waar enorme krachten op rusten, kan het smelten van een deel van het ijs voldoende zijn om het hele overgangsgebied instabiel te maken. De boel dondert dan in elkaar. Extra vervelend: het ijs in het overgangsgebied geeft tegendruk aan de verder landinwaarts gelegen gletsjers, die langzaam naar de oceaan bewegen. Als die tegendruk wegvalt, kan de gletsjer sneller stromen, met mogelijk een snelle stijging van de zeespiegel tot gevolg. Natuurlijk hangt wat er precies gebeurt voor een aanzienlijk deel af van lokale omstandigheden. De afbeelding hieronder illustreert dat aan de hand van de snelheid waarmee het ijs beweegt. Lees verder

Coherentie. Beleidsmatige terughoudendheid van klimatologen onder de loep.

Gastblog van G.J. Smeets met een tekening van Marije Mooren

better be wrong

Dat het IPCC aan beleidsmakers info verschaft zonder zich met beleidsbeslissingen te bemoeien (“Policy relevant but not policy prescriptive”) heeft zo z’n redenen. Het is arbeidstechnisch handig en verstandig en bovendien politiek correct dat degene die een (risico)analyse maakt niet dezelfde is als degene die maatregelen neemt. Daarnaast is er kentheoretisch iets voor te zeggen om onderscheid te maken tussen feiten en hun betekenis. Want geconstateerde feiten, zo luidt de communis opinio, zijn iets anders dan de betekenis die eraan verleend wordt. Dat laatste ga ik in dit blogstuk onder het epistemologische vergrootglas leggen. Ik begin met een paar opmerkingen over het werk van David Hume en Karl Popper. Vervolgens leg ik enkele basale feiten voor die het onderscheid feit / betekenis op losse schroeven zetten. Ik sluit af met een paar suggestieve overwegingen.

David Hume is een goede bekende in de historie van het onderscheid tussen feiten en hun betekenis. Een objectieve buitenwereld bestaat voor ons niet, aldus de empirist Hume. Daarom moeten we volgens hem onderscheid maken tussen wat we discutabel waarnemen en de betekenis die we aan de waarneming verlenen. In (de draad van) een recent blogstuk is e.e.a. aan de orde geweest en het is uitdrukkelijk niet mijn bedoeling die gedachtewisseling te herhalen. Mij gaat het er nu om dat voor Hume zelf genoemd onderscheid problematisch was. Zoals hij het ook problematisch vond dat hij causaliteit niet uit de ervaring kon afleiden. Hij kon voor zichzelf niet verhullen dat zijn scepsis hem zwaar viel. In zijn ‘Traktaat over de menselijke natuur’ (Boom, Amsterdam 2007, pag. 269) noteert hij:

… ik begin mij te verbeelden dat ik in de meest wanhopige situatie verkeer die men zich kan voorstellen, omgeven door totale duisternis en beroofd van het gebruik van alle ledematen en geestesgaven.

Een andere protagonist in de historie van het onderscheid tussen feit en betekenis is Karl Popper. Hij schreef een recept speciaal voor wetenschappers waarmee de dreigende waanzin van Hume’s compromisloze empirisme bezworen kon worden. Popper schreef vóór (‘ought’) hoe men tot bruikbare wetenschappelijke feiten (‘is’) komt. Zijn receptuur bevat twee vuistregels: uitspraken die in principe niet weerlegbaar zijn zijn onwetenschappelijk, en een wetenschappelijke verklaring doet opgeld zolang geen bruikbaarder alternatief zich aandient. Dat is een pragmatische, d.w.z. probleem / oplossing gerichte opvatting van wetenschap. Poppers receptuur is mede ingegeven door zijn overtuiging dat een observatie, een ‘is’-uitspraak, uiteindelijk niet te verantwoorden is. In zijn Logic of Scientific Discovery (London, Hutchington 1959, pag. 109) staat het zò:

…basic statements are not justifiable by our immediate experiences but are […] accepted by an act, a free decision.

Lees verder

Nieuw onderzoek maakt lage klimaatgevoeligheid minder waarschijnlijk

climatesensitivity.001

Klimaatgevoeligheid, het lijkt een eenvoudig begrip: de temperatuurverandering als gevolg van een verdubbeling van de CO2-concentratie. De realiteit is een stuk ingewikkelder. Het overzicht van recente publicaties op de internetpagina van de workshop over klimaatgevoeligheid van afgelopen voorjaar geeft een aardig beeld van die ingewikkeldheid. Het grote aantal feedbacks dat op zeer uiteenlopende tijdschalen een rol speelt maakt niet alleen het nauwkeurig bepalen van de klimaatgevoeligheid lastig; ook bij de interpretatie liggen er wat voetangels en klemmen op de loer. Om de risico’s van klimaatverandering voor mens en natuur te bepalen, is bijvoorbeeld het tempo van de verandering, en dus de klimaatgevoeligheid op termijn van ruwweg een eeuw, minstens zo belangrijk als de uiteindelijke opwarming na duizenden jaren. Aan de andere kant: om resultaten van paleoklimatologisch onderzoek te vertalen naar het huidige klimaat, is ook inzicht nodig in langetermijneffecten.

De klimaatwetenschap heeft dan ook verschillende begrippen voor de klimaatgevoeligheid op verschillende tijdschalen. De twee meest gebruikte zijn:

  • Equilibrium Climate Sensitivity (ECS): de temperatuurstijging als het klimaatsysteem na een verdubbeling van de CO2-concentratie weer in evenwicht is. Maar er zit een adder onder het gras. Het begrip ECS komt uit het Charney-rapport uit 1979 – met een beetje goede wil is dat rapport te beschouwen als het begin van de wetenschappelijke consensus (pdf) over de menselijke invloed van het klimaat – en het beperkt zich dan ook tot de feedbacks die in dat rapport werden meegenomen. Feedbacks op geologische tijdschaal, ten gevolge van bijvoorbeeld het smelten van grote ijskappen of veranderingen in de biosfeer, zijn er niet bij ingegrepen. ECS wordt ook wel Charney sensitivity genoemd.
  • Transient Climate Respons (TCR): de opwarming na 70 jaar, wanneer de CO2-concentratie elk jaar met 1% toeneemt. Waarom 70 jaar? Omdat de CO2-concentratie bij een jaarlijkse toename van 1% na 70 jaar is verdubbeld. TCR geeft een indicatie van de klimaatgevoeligheid die voor onze samenleving het meest relevant was: de respons van het klimaatsysteem die we binnen één of enkele generaties kunnen verwachten.

Klimaatgevoeligheid op geologische tijdschaal, met inbegrip van alle trage feedbacks, heet Earth System Sensitivity (ESS). ECS en ESS van elkaar onderscheiden kan lastig zijn. En dan is er ook nog de Effective Climate Sensitivity, een schatting van de ECS op basis van een vereenvoudigd model, die door veel wetenschappers als een schatting van de ondergrens wordt gezien. Ik durf mijn hand er niet voor in het vuur te steken dat deze termen altijd helemaal consequent worden gebruikt. Lees verder

Het onzekerheidsmonster: een verraderlijk beestje

Vertaling/bewerking van een blogpost van Victor Venema. De tekening is van Marije Mooren.

onzekerheidsmonster

I think that uncertainties in global surface temperature anomalies is substantially understated.

Judith Curry

People often see uncertainty as a failing of science. It’s the opposite: uncertainty is what drives science forward.

Dallas Campbell

Stel je rijdt over een bochtige weg in het bos en er komt mist op die snel dichter wordt. Matig je dan je snelheid, of blijf je hard doorrijden zolang je niet zeker weet dat er een bocht aankomt? Meer mist betekent meer onzekerheid, en minder voorspelbaarheid: hoe meer mist, hoe groter de kans dat een bocht of een obstakel op de weg, misschien een overstekend hert, te laat wordt opgemerkt. Tegenstanders van mitigatie van klimaatverandering hebben het vaak en graag over onzekerheid. Blijkbaar vinden zij onzekerheid een goede reden om flink gas te blijven geven. Het “uncertainty monster” is in de Engelstalige klimaatblogosfeer inmiddels een gevleugelde term.

Onzekerheid kan nooit een argument zijn om een bepaald risico te nemen. Toch wordt het vaak als reden aangevoerd om een beslissing over risico’s uit te stellen. In de politiek is dat zeker zo: aanvullend onderzoek, een commissie die alles nog eens van alle kanten bekijkt, het werkt altijd weer om een lastige beslissing nog maar even niet te nemen. Voor tegenstanders van bepaald beleid is een beroep op onzekerheid dan ook een effectieve strategie om tijd te winnen, of om beslissingen helemaal van tafel te krijgen. De strategie komt zo veel voor, dat hij een naam heeft gekregen:

Appeals to uncertainty to preclude or delay political action are so pervasive in political and lobbying circles that they have attracted scholarly attention under the name “Scientific Certainty Argumentation Methods”, or “SCAMs” for short. SCAMs are politically effective because they equate uncertainty with the possibility that a problem may be less serious than anticipated, while ignoring the often greater likelihood that the problem may be more deleterious.

Lees verder

Is het gat in de energieboekhouding van de aarde gedicht?

De tekening bij dit stuk is van Marije Mooren

Missing the Heat. Tekening van Marije Mooren

Om maar met de deur in huis te vallen: de Koppenwet van Betteridge – als de kop boven een artikel eindigt met een vraagteken, is het antwoord: nee – is niet van toepassing op de kop hierboven. Maar het antwoord op de vraag is ook zeker geen volmondig: ja. Wat er wel aan de hand is: vorige maand verscheen er een artikel dat een bijzonder interessant licht werpt op het energiebudget van het klimaatsysteem, en dus van de aarde. Het soort artikel dat de geschiedenis in kan gaan als het begin van een behoorlijke stap vooruit in de klimaatwetenschap. Of als een interessant idee dat door aanvullend onderzoek onderuit wordt gehaald.

Nu de suspense zo ver is opgevoerd is het tijd voor een afknapper, de titel van het artikel: “Distinct energy budgets for anthropogenic and natural changes during global warming hiatus” van Xie, Kosaka en Okumura. Ja hoor, weer die “hiatus”. Lewandowsky zal er wel van gruwen. Niet helemaal onterecht. Want veel meer dan over een opwarmingspauze, gaat het artikel over hoe het klimaatsysteem reageert op veranderingen als gevolg van klimaatforceringen en interne variabiliteit en de gevolgen daarvan voor de energiebalans. Ofwel: over feedbacks in het klimaatsysteem.

We duiken hier dus, ter afwisseling van alle mediaberichtgeving in de afgelopen weken over de Parijse perikelen, diep de klimaatwetenschap in. De wetenschap over de energiebalans van de aarde, om precies te zijn. Of de stralingsbalans; omdat de aarde alleen via straling energie uit kan wisselen met het heelal (een enkel uit de atmosfeer ontsnappend gasmolecuul, of binnenkomend deeltje ruimtestof buiten beschouwing gelaten), komt dat op hetzelfde neer. Inzicht in de stralingsbalans, en daarmee in de energiehuishouding van het klimaatsysteem, is de sleutel tot begrip van veranderingen in het klimaat. Lees verder